Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene catalytic cracking

In a single stage, without liquid recycle, the conversion can be optimized between 60 and 90%. The very paraffinic residue is used to make lubricant oil bases of high viscosity index in the range of 150 N to 350 N the residue can also be used as feedstock to steam cracking plants providing ethylene and propylene yields equal to those from paraffinic naphthas, or as additional feedstock to catalytic cracking units. [Pg.391]

As indicated in Table 4, large-scale recovery of natural gas Hquid (NGL) occurs in relatively few countries. This recovery is almost always associated with the production of ethylene (qv) by thermal cracking. Some propane also is used for cracking, but most of it is used as LPG, which usually contains butanes as well. Propane and ethane also are produced in significant amounts as by-products, along with methane, in various refinery processes, eg, catalytic cracking, cmde distillation, etc (see Petroleum). They either are burned as refinery fuel or are processed to produce LPG and/or cracking feedstock for ethylene production. [Pg.400]

The ethylene feedstock used in most plants is of high purity and contains 200—2000 ppm of ethane as the only significant impurity. Ethane is inert in the reactor and is rejected from the plant in the vent gas for use as fuel. Dilute gas streams, such as treated fluid-catalytic cracking (FCC) off-gas from refineries with ethylene concentrations as low as 10%, have also been used as the ethylene feedstock. The refinery FCC off-gas, which is otherwise used as fuel, can be an attractive source of ethylene even with the added costs of the treatments needed to remove undesirable impurities such as acetylene and higher olefins. Its use for ethylbenzene production, however, is limited by the quantity available. Only large refineries are capable of deUvering sufficient FCC off-gas to support an ethylbenzene—styrene plant of an economical scale. [Pg.478]

The principal sources of feedstocks in the United States are the decant oils from petroleum refining operations. These are clarified heavy distillates from the catalytic cracking of gas oils. About 95% of U.S. feedstock use is decant oil. Another source of feedstock is ethylene process tars obtained as the heavy byproducts from the production of ethylene by steam cracking of alkanes, naphthas, and gas oils. There is a wide use of these feedstocks in European production. European and Asian operations also use significant quantities of coal tars, creosote oils, and anthracene oils, the distillates from the high temperature coking of coal. European feedstock sources are 50% decant oils and 50% ethylene tars and creosote oils. [Pg.544]

A dephlegmator process can be used to recover ethylene—ethane and heavier hydrocarbons from fluid catalytic cracking (FCC) unit off-gas (Fig. 7). Pretreated feed gas is cooled to about 230 K and then further cooled and rectified in a dephlegmator to recover 90 to 98% of the ethylene, 99 % of the... [Pg.331]

Catalytic Pyrolysis. This should not be confused with fluid catalytic cracking, which is used in petroleum refining (see Catalysts, regeneration). Catalytic pyrolysis is aimed at producing primarily ethylene. There are many patents and research articles covering the last 20 years (84—89). Catalytic research until 1988 has been summarized (86). Almost all catalysts produce higher amounts of CO and CO2 than normally obtained with conventional pyrolysis. This indicates that the water gas reaction is also very active with these catalysts, and usually this leads to some deterioration of the olefin yield. Significant amounts of coke have been found in these catalysts, and thus there is a further reduction in olefin yield with on-stream time. Most of these catalysts are based on low surface area alumina catalysts (86). A notable exception is the catalyst developed in the former USSR (89). This catalyst primarily contains vanadium as the active material on pumice (89), and is claimed to produce low levels of carbon oxides. [Pg.443]

Ethylene as a By-Product. The contribution to world ethylene production is small, but not zero. In petroleum refining fluid catalytic cracking (FCC) units, small amounts of ethylene are produced but generally not recovered, except in a few locations where large FCC units are adjacent to petrochemical faciUties. [Pg.444]

Ethylene is a constituent of refinery gases, especially those produced from catalytic cracking units. The main source for ethylene is the steam cracking of hydrocarbons (Chapter 3). Table 2-2 shows the world ethylene production by source until the year 2000. U.S. production of ethylene was approximately 51 billion lbs in 1997. ... [Pg.33]

Deep catalytic cracking (DCC) is a catalytic cracking process which selectively cracks a wide variety of feedstocks into light olefins. The reactor and the regenerator systems are similar to FCC. However, innovation in the catalyst development, severity, and process variable selection enables DCC to produce more olefins than FCC. In this mode of operation, propylene plus ethylene yields could reach over 25%. In addition, a high yield of amylenes (C5 olefins) is possible. Figure 3-7 shows the DCC process and Table 3-10 compares olefins produced from DCC and FCC processes. ... [Pg.77]

The three isomers constituting n-hutenes are 1-hutene, cis-2-hutene, and trans-2-hutene. This gas mixture is usually obtained from the olefinic C4 fraction of catalytic cracking and steam cracking processes after separation of isobutene (Chapter 2). The mixture of isomers may be used directly for reactions that are common for the three isomers and produce the same intermediates and hence the same products. Alternatively, the mixture may be separated into two streams, one constituted of 1-butene and the other of cis-and trans-2-butene mixture. Each stream produces specific chemicals. Approximately 70% of 1-butene is used as a comonomer with ethylene to produce linear low-density polyethylene (LLDPE). Another use of 1-butene is for the synthesis of butylene oxide. The rest is used with the 2-butenes to produce other chemicals. n-Butene could also be isomerized to isobutene. ... [Pg.238]

Ethylene is obtained by catalytic cracking of naphtha. It is one of the key petrochemical commodities worldwide used mostly in the production of polyethylene, ethyl benzene, ethylene oxide and others. The consumption of ethylene for the production of alcohols and other surfactant raw materials represents less than 10% of the total end uses of ethylene on a worldwide basis. [Pg.52]

Besides ethylene and propylene, the steam cracking of naphtha and catalytic cracking in the refinery produce appreciable amounts of C4 compounds. This C4 stream includes butane, isobutane, 1-butene (butylene), cis- and trans-2-hutene, isobutene (isobutylene), and butadiene. The C4 hydrocarbons can be used to alkylate gasoline. Of these, only butadiene and isobutylene appear in the top 50 chemicals as separate pure chemicals. The other C4 hydrocarbons have specific uses but are not as important as butadiene and isobutylene. A typical composition of a C4 stream from steam cracking of naphtha is given in Table 8.3. [Pg.124]

The preferential release of C3 and C4 as the smallest fragments is a relative matter ethylene, ethane, and methane can be produced under more drastic experimental conditions, and are produced in small amounts in ordinary catalytic cracking. The conventional process operates under conditions which maximize the desired type of splitting to the more useful gaseous products. To demonstrate the application of theory to practice, the predicted and experimental curves for the cracking of cetane (7) are shown in Figure 3. [Pg.12]

The use of thermal and catalytic cracking processes for the production of high-octane motor gasolines is accompanied by the production of quantities of light hydrocarbons such as ethylene, propylene, butene, and isobutane. These materials are satisfactory gasoline components octane-wise, but their vapor pressures are so high that only a portion of butanes can actually be blended into gasoline. Alkylation is one of several processes available for the utilization of these excess hydrocarbons. [Pg.99]

These processes are specifically designed for ethylene production but they also yield C4 hydrocarbons as coproducts. The amount of C4 compounds produced depends on the feedstock, the cracking method, and cracking severity. Steam cracking of naphtha provides better yields than does catalytic cracking of gas oil. With more severe steam cracking both butenes and overall C4 productions decrease, whereas the relative amount of 1,3-butadiene increases. Overall C4 yields of 4-6% may be achieved. [Pg.46]

Feed stock for the first sulfuric acid alkylation units consisted mainly of butylenes and isobutane obtained originally from thermal cracking and later from catalytic cracking processes. Isobutane was derived from refinery sources and from natural gasoline processing. Isomerization of normal butane to make isobutane was also quite prevalent. Later the olefinic part of the feed stock was expanded to include propylene and amylenes in some cases. When ethylene was required in large quantities for the production of ethylbenzene, propane and butanes were cracked, and later naphtha and gas oils were cracked. This was especially practiced in European countries where the cracking of propane has not been economic. [Pg.166]

Newer catalysts of the fluoride type promise to be much more versatile. Essentially all ethylene from catalytic cracking was once burned as fuel but can now be utilized for the production of ethylbenzene using newer catalysts. [Pg.183]

In a plant producing 200 kt/a of ethylene from cracked naphtha, acetylene in the product was hydrogenated to ethylene in a catalytic unit operated under conditions mild enough not to hydrogenate ethylene. During a temporary shut-down and probably owing to operating error, the internal temperature in the catalytic unit rose to... [Pg.1678]

The olefins ethylene and propylene are highly important synthetic chemicals in the petrochemical industry. Large quantities of such chemicals are used as feedstock in the production of polyethylene, polypropylene, and so on [31]. The prime source of lower olefins is the olefin-paraffin mixtures from steam cracking or fluid catalytic cracking in the refining process [32]. Such mixtures are intrinsically difficult to... [Pg.149]


See other pages where Ethylene catalytic cracking is mentioned: [Pg.440]    [Pg.440]    [Pg.728]    [Pg.232]    [Pg.175]    [Pg.164]    [Pg.527]    [Pg.363]    [Pg.90]    [Pg.400]    [Pg.42]    [Pg.1611]    [Pg.242]    [Pg.17]    [Pg.107]    [Pg.109]    [Pg.117]    [Pg.242]    [Pg.12]    [Pg.119]    [Pg.142]    [Pg.113]    [Pg.20]    [Pg.331]    [Pg.56]    [Pg.138]    [Pg.232]    [Pg.1611]    [Pg.407]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Cracking ethylene

© 2024 chempedia.info