Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxidation, metal-catalyzed

Transition metal-catalyzed epoxidations, by peracids or peroxides, are complex and diverse in their reaction mechanisms (Section 5.05.4.2.2) (77MI50300). However, most advantageous conversions are possible using metal complexes. The use of t-butyl hydroperoxide with titanium tetraisopropoxide in the presence of tartrates gave asymmetric epoxides of 90-95% optical purity (80JA5974). [Pg.36]

In 1990, Jacobsen and subsequently Katsuki independently communicated that chiral Mn(III)salen complexes are effective catalysts for the enantioselective epoxidation of unfunctionalized olefins. For the first time, high enantioselectivities were attainable for the epoxidation of unfunctionalized olefins using a readily available and inexpensive chiral catalyst. In addition, the reaction was one of the first transition metal-catalyzed... [Pg.29]

Oxidants Available for Selective Transition Metal-catalyzed Epoxidation... [Pg.186]

There are several available terminal oxidants for the transition metal-catalyzed epoxidation of olefins (Table 6.1). Typical oxidants compatible with most metal-based epoxidation systems are various alkyl hydroperoxides, hypochlorite, or iodo-sylbenzene. A problem associated with these oxidants is their low active oxygen content (Table 6.1), while there are further drawbacks with these oxidants from the point of view of the nature of the waste produced. Thus, from an environmental and economical perspective, molecular oxygen should be the preferred oxidant, because of its high active oxygen content and since no waste (or only water) is formed as a byproduct. One of the major limitations of the use of molecular oxygen as terminal oxidant for the formation of epoxides, however, is the poor product selectivity obtained in these processes [6]. Aerobic oxidations are often difficult to control and can sometimes result in combustion or in substrate overoxidation. In... [Pg.186]

Table 6.12 Transition metal-catalyzed epoxidation of olefins with H202 as terminal oxidant. Table 6.12 Transition metal-catalyzed epoxidation of olefins with H202 as terminal oxidant.
The complex Pd-(-)-sparteine was also used as catalyst in an important reaction. Two groups have simultaneously and independently reported a closely related aerobic oxidative kinetic resolution of secondary alcohols. The oxidation of secondary alcohols is one of the most common and well-studied reactions in chemistry. Although excellent catalytic enantioselective methods exist for a variety of oxidation processes, such as epoxidation, dihydroxy-lation, and aziridination, there are relatively few catalytic enantioselective examples of alcohol oxidation. The two research teams were interested in the metal-catalyzed aerobic oxidation of alcohols to aldehydes and ketones and became involved in extending the scopes of these oxidations to asymmetric catalysis. [Pg.84]

Metal-Catalyzed Direct Hydroxy-Epoxidation of Olefins," Adam. W. Richter, M.J. Accts. Chem. Res., 1994, 27, 57... [Pg.265]

Transition Metal-Catalyzed Epoxidation of Alkenes. Other transition metal oxidants can convert alkenes to epoxides. The most useful procedures involve f-butyl hydroperoxide as the stoichiometric oxidant in combination with vanadium or... [Pg.1081]

The introduction of various metal-catalyzed reactions, however, remarkably expanded the scope of the epoxidation of Q,.3-unsaturatcd ketones. Enders et al. have reported that a combination of diethylzinc and A-methyl-pseudoephedrine epoxidizes various o,. j-unsaturatcd ketones, under an oxygen atmosphere, with good to high enantioselectivity (Scheme 23).126 In this reaction, diethylzinc first reacts with the chiral alcohol, and the resulting ethylzinc alkoxide is converted by oxygen to an ethylperoxo-zinc species that epoxidizes the a,/3-unsaturated ketones enantioselectively. Although a stoichiometric chiral auxiliary is needed for this reaction, it can be recovered in almost quantitative yield. [Pg.223]

In contrast to the epoxidation of a,/3-unsaturated ketones, the metal-catalyzed asymmetric epoxidations of o,/3-unsaturated esters are much more limited in number. Epoxidation of ethyl m-cinnamatc with Mn(salen) (26) has been reported to give a mixture of the corresponding cis-(93% ee) and trans-epoxides in a ratio of 4 1.133... [Pg.225]

A number of additional metal-catalyzed epoxidations have been reported in the past year. Platinum is a rarely used catalyst in oxidation reactions. The use of chiral Pt-catalyst 2 in the epoxidation of terminal alkenes provides the epoxide products in moderate yield and enantiomeric excess <06JA14006>. The chiral hydroxamide 3 is used with a Mo catalyst to provide the epoxide product in excellent yields and moderate enantioselectivity <06AG(I)5849>. A bis-titanium catalyst, 4, has also been used to epoxidize the usual set of alkenes with H202 as the oxidant <06AG(I)3478>. [Pg.71]


See other pages where Epoxidation, metal-catalyzed is mentioned: [Pg.125]    [Pg.125]    [Pg.622]    [Pg.185]    [Pg.186]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.192]    [Pg.194]    [Pg.196]    [Pg.198]    [Pg.200]    [Pg.202]    [Pg.204]    [Pg.206]    [Pg.208]    [Pg.210]    [Pg.212]    [Pg.214]    [Pg.216]    [Pg.218]    [Pg.220]    [Pg.222]    [Pg.224]    [Pg.243]    [Pg.392]    [Pg.141]    [Pg.1338]    [Pg.50]    [Pg.11]    [Pg.222]    [Pg.469]    [Pg.543]   
See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Epoxides catalyzed

Epoxides metalation

Metal epoxidations

Metallated epoxides

© 2024 chempedia.info