Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties ethyl ether

Physical Properties. Furfuryl alcohol (2-furanmethanol) [98-00-0] is aHquid, colorless, primary alcohol with a mild odor. On exposure to air, it gradually darkens in color. Furfuryl alcohol is completely miscible with water, alcohol, ether, acetone, and ethyl acetate, and most other organic solvents with the exception of paraffinic hydrocarbons. It is an exceUent, highly polar solvent, and dissolves many resins. [Pg.79]

Dichloroacetic acid [79-43-6] (CI2CHCOOH), mol wt 128.94, C2H2CI2O2, is a reactive intermediate in organic synthesis. Physical properties are mp 13.9°C, bp 194°C, density 1.5634 g/mL, and refractive index 1.4658, both at 20°C. The Hquid is totally miscible in water, ethyl alcohol, and ether. Dichloroacetic acid K = 5.14 X 10 ) is a stronger acid than chloroacetic acid. Most chemical reactions are similar to those of chloroacetic acid, although both chlorine... [Pg.88]

Vinyl Ethers. The principal commercial vinyl ethers are methyl vinyl ether (methoxyethene, C H O) [107-25-5], ethyl vinyl ether (ethoxyethene, C HgO) [104-92-2], and butyl vinyl ether (1-ethenyloxybutane, C H 20) [111-34-2]. (See Table 8 for physical properties.) Others such as the isopropyl, isobutyl, hydroxybutyl, decyl, hexadecyl, and octadecyl ethers, as well as the divinyl ethers of butanediol and of triethylene glycol, have been offered as development chemicals (see Ethers). [Pg.114]

The polymeric products can be made to vary widely in physical properties through controlled variation in the ratios of monomers employed in thek preparation, cross-linking, and control of molecular weight. They share common quaHties of high resistance to chemical and environmental attack, excellent clarity, and attractive strength properties (see Acrylic ester polymers). In addition to acryHc acid itself, methyl, ethyl, butyl, isobutyl, and 2-ethylhexyl acrylates are manufactured on a large scale and are available in better than 98—99% purity (4). They usually contain 10—200 ppm of hydroquinone monomethyl ether as polymerization inhibitor. [Pg.148]

Physical properties of glycerol are shown in Table 1. Glycerol is completely soluble in water and alcohol, slightly soluble in diethyl ether, ethyl acetate, and dioxane, and insoluble in hydrocarbons (1). Glycerol is seldom seen in the crystallised state because of its tendency to supercool and its pronounced freesing point depression when mixed with water. A mixture of 66.7% glycerol, 33.3% water forms a eutectic mixture with a freesing point of —46.5°C. [Pg.346]

Physical Properties. The physical properties of cyanoacetic acid [372-09-8] NM7—CH2COOH (28) ate summarized in Table 4. The industrially most important esters ate methyl cyanoacetate [105-34-0] and ethyl cyanoacetate [105-56-6]. Both esters ate miscible with alcohol and ether and immiscible with water. [Pg.470]

The physical properties of finish removers vary considerably due to the diverse uses and requirements of the removers. Finish removers can be grouped by the principal ingredient of the formula, method of appHcation, method of removal, chemical base, viscosity, or hazardous classification. Except for method of apphcation, a paint remover formulation usually has one aspect of each group, by which it can be used for one or more appHcations. A Hst of the most common organic solvents used in finish removers has been compiled (3). Many are mentioned throughout this article others include ethyl lactate [97-64-3] propylene carbonate [108-32-7] furfural alcohol [98-01-1/, dimethyl formamide [68-12-2] tetrahydrofuran [109-99-9] methyl amyl ketone [110-43-0] dipropylene glycol methyl ether [34590-94-8] and Exxate 600, a trade name of Exxon Chemicals. [Pg.550]

The physical properties of methylene chloride are Hsted in Table 1 and the binary a2eotropes in Table 2. Methylene chloride is a volatile Hquid. Although methylene chloride is only slightly soluble in water, it is completely miscible with other grades of chlorinated solvents, diethyl ether, and ethyl alcohol. It dissolves in most other common organic solvents. Methylene chloride is also an excellent solvent for many resins, waxes, and fats, and hence is well suited to a wide variety of industrial uses. Methylene chloride alone exhibits no dash or fire point. However, as Htde as 10 vol % acetone or methyl alcohol is capable of producing a dash point. [Pg.518]

Table 2 gives physical property data for propylene chlorohydrins. 2-Chloro-l-propanol [78-89-7] HOCH2CHCICH2, is also named 2-propylene chlorohydrin, 2-chloropropyl alcohol, or 2-chloro-l-hydroxypropane. l-Chloro-2-propanol [127-00-4] CICH2CHOHCH2, also known as j -propjlene chlorohydrin, 1-chloroisopropyl alcohol, and l-chloro-2-hydroxypropane, is a colorless Hquid, miscible in water, ethanol, and ethyl ether. [Pg.70]

Physical properties of some commercially available polyamines appear in Table 1. Generally, they are slightly to moderately viscous, water-soluble Hquids with mild to strong ammoniacal odors. Although completely soluble in water initially, hydrates may form with time, particularly with the heavy ethyleneamines (TETA, TEPA, PEHA, and higher polyamines), to the point that gels may form or the total solution may soHdify under ambient conditions. The amines are also completely miscible with alcohols, acetone, benzene, toluene and ethyl ether, but only slightly soluble in heptane. [Pg.40]

Typical physical properties of ethyl cellulose are compared with those of the cellulose ethers in Table 22.2. [Pg.630]

Ethyl vinyl ether, 1 254, 258 derivation from ethanol, 10 557 physical properties of, l 255t Ethynylation, acetylene, 1 181, 231-249 Etretinate, 25 790 Etridiazole, 23 629... [Pg.337]

Physical Properties. The physical properties or cvanoacelic aeitl N=C-CH COOH are summarized in Table 3. The industrially mosi important esters are methyl cyanoacetdte and ethyl eyanoacctaie. Both esters are miscible with alcohol and ether and immiscible with yvaier. [Pg.964]

It s important to realize that different isomers are different chemical compounds. They have different structures, different chemical properties, and different physical properties, such as melting point and boiling point. For example, ethyl alcohol (ethanol, or grain alcohol) and dimethyl ether both have the formula C2H60, yet ethyl alcohol is a liquid with a boiling point of 78.5°C, whereas dimethyl ether is a gas with a boiling point of —23°C. [Pg.989]

Hydrogen bonding has a large effect on the physical properties of organic compounds, as shown by the boiling points of ethanol (ethyl alcohol) and dimethyl ether, two isomers of molecular formula C2H60 ... [Pg.68]

Alkyl vinyl ethers (CH2=CH—OR R = ethyl or higher alkyl) are washed successively with 10% aqueous sodium hydroxide solution and deionized water and distilled at least twice over calcium hydride. The final cut is distributed into small brown ampoules under dry nitrogen and sealed immediately before being stored in a refrigerator. The following show some physical properties needed for experiments ... [Pg.423]


See other pages where Physical properties ethyl ether is mentioned: [Pg.142]    [Pg.302]    [Pg.48]    [Pg.248]    [Pg.503]    [Pg.461]    [Pg.111]    [Pg.190]    [Pg.592]    [Pg.169]    [Pg.482]    [Pg.1427]    [Pg.17]    [Pg.461]    [Pg.79]    [Pg.48]    [Pg.264]   
See also in sourсe #XX -- [ Pg.587 ]




SEARCH



Ether ethylic

Ethere physical properties

Ethers ethyl ether

Ethers physical properties

Ethyl ether

© 2024 chempedia.info