Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetals to ethers

AC2O, FeCl3, It, <30 min, 60-93% yield. These conditions will selectively protect an aldehyde in the presence of a ketone. This combination also converts r-butyldimethylsilyl (TBDMS) ethers to acetates. [Pg.184]

The anodic oxidation of enol ethers at a graphite anode in methanol containing 2,6-lutidine and sodium perchlorate results in the dimerization of the enol ethers to acetals of 1,4-dica nyl compounds (equation 22). The mechanism of dimerization is thought to involve a tail-tail coupling of the cation radicals generated by the one-electron oxidation of the enol ethers. [Pg.797]

Indium triiodide catalyzes transesterification processes, e.g. the acylation of alcohols or amines and the conversion of THP ethers to acetates (Scheme 8.143) [187]. Indium triflate is also an efficient catalyst for the acylation of alcohols and amines (Scheme 8.144) [188]. Carboxylates are hydrolyzed to the corresponding carboxylic acids in high yield by microwave-assisted reaction on the surface of moistened silica gel in the presence of indium triiodide (Scheme 8.145) [189]. [Pg.379]

MOM ethers can be converted directly to an acetate (FeCl, AC2O, 2-9 h, 20-95% yield), which is easily hydrolyzed to the alcohol. Inl3/Ac20 converts MOM and THP ethers to acetates. ... [Pg.33]

Add 10 ml. of ethyl ether to acetic acid solution of tctraethylammonium chloride and iodine monochloride. Cool. [Pg.173]

However, Halcon have now developed a process, catalysed by rhodium (or nickel) with iodine and other promoters, for the carbonylation of methyl acetate (or dimethyl ether) to acetic anhydride. Like the ketene route, this technology fits in well with acetylation processes. [Pg.377]

In subsequent developments, Eastman has reported two new alternative manufacturing routes to vinyl acetate (38). The first uses the carbonylation of dimethyl ether to acetic anhydride, followed by the reaction between acetic anhydride and acetaldehyde in a reactive distillation column to 3ueld vinyl acetate, whereas the second involves the intermediacy of ketene. Here ketene is hydrogenated to acetaldehyde, and the acetaldehyde is reacted with a second equivalent of ketene to produce vinyl acetate. Both of these routes are claimed to avoid the problematic and expensive acetic acid recycle. [Pg.1819]

Tetrahydropyranyl (THP) ethers are frequently used as a protecting group for the hydroxyl group. Their formation and cleavage from alcohols and phenols have been successfully catalyzed by Bi(N03)3 5H20 [92] and Bi(0Tf)3 %H20 [93]. The conversion of THP ethers to acetate and formate esters has been reported to be efficiently catalyzed by Bi(0Tf)3 xH20 [94]. [Pg.45]

Ranu et al. employed Inl3 generated in situ to catalyze the conversion of THP and methoxymethyl (MOM) ethers to acetate, using the easily available but usually unreactive ethyl acetate [268, 269] (Figure 8.121). [Pg.445]

If the substance is found to be far too soluble in one solvent and much too insoluble in another solvent to allow of satisfactory recrystallisation, mixed solvents or solvent pairs may frequently be used with excellent results. The two solvents must, of course, be completely miscible. Recrystallisation from mixed solvents is carried out near the boiling point of the solvent. The compound is dissolved in the solvent in which it is very soluble, and the hot solvent, in which the substance is only sparingly soluble, is added cautiously until a slight turbidity is produced. The turbidity is then just cleared by the addition of a small quantity of the first solvent and the mixture is allowed to cool to room temperature crystals will separate. Pairs of liquids which may be used include alcohol and water alcohol and benzene benzene and petroleum ether acetone and petroleum ether glacial acetic acid and water. [Pg.125]

Selection of solvents. The choice of solvent will naturally depend in the first place upon the solubility relations of the substance. If this is already in solution, for example, as an extract, it is usually evaporated to dryness under reduced pressure and then dissolved in a suitable medium the solution must be dilute since crystallisation in the column must be avoided. The solvents generally employed possess boiling points between 40° and 85°. The most widely used medium is light petroleum (b.p. not above 80°) others are cycZohexane, carbon disulphide, benzene, chloroform, carbon tetrachloride, methylene chloride, ethyl acetate, ethyl alcohol, acetone, ether and acetic acid. [Pg.161]

Benzil monohydrazone. Method 1. Boil a mixture of 26 g. of hydrazine sulphate, 55 g. of crystallised sodium acetate and 125 ml. of water for 5 minutes, cool to about 50°, and add 115 ml. of methyl alcohol. Filter off the precipitated sodium sulphate and wash with a little alcohol. Dissolve 25 g. of benzil (Section IV,126) in 40 ml. of hot methyl alcohol and add the above hydrazine solution, heated to 60°. Most of the benzil hydrazone separates immediately, but reflux for 30 minutes in order to increase the yield. Allow to cool, filter the hydrazone and wash it with a httle ether to remove the yellow colour. The yield is 25 g., m.p. 149-151° (decomp.). [Pg.856]

Similar activation takes place in the carbonylation of dimethyl ether to methyl acetate in superacidic solution. Whereas acetic acid and acetates are made nearly exclusively using Wilkinson s rhodium catalyst, a sensitive system necessitating carefully controlled conditions and use of large amounts of the expensive rhodium triphenylphosphine complex, ready superacidic carbonylation of dimethyl ether has significant advantages. [Pg.193]

METHOD 2 [89]--1M MDA or benzedrine and 1M benzaldehyde is dissolved in 95% ethanol (Everclear), stirred, the solvent removed by distillation then the oil vacuum distilled to give 95% yellow oil which is a Schiff base intermediate. 1M of this intermediate, plus 1M iodomethane, is sealed in a pipe bomb that s dumped in boiling water for 5 hours giving an orangy-red heavy oil. The oil is taken up in methanol, 1/8 its volume of dH20 is added and the solution refluxed for 30 minutes. Next, an equal volume of water is added and the whole solution boiled openly until no more odor of benzaldehyde is detected (smells like almond extract). The solution is acidified with acetic acid, washed with ether (discard ether), the MDMA or meth freebase liberated with NaOH and extracted with ether to afford a yield of 90% for meth and 65% for MDMA. That s not a bad conversion but what s with having to use benzaldehyde (a List chemical) Strike wonders if another aldehyde can substitute. [Pg.159]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

With Lewis acids as catalysts, compounds containing more than one alkoxy group on a carbon atom add across vinyl ether double bonds. Acetals give 3-alkoxyacetals since the products are also acetals, they can react further with excess vinyl ether to give oligomers (228—230). Orthoformic esters give diacetals of malonaldehyde (231). With Lewis acids and mercuric salts as catalysts, vinyl ethers add in similar fashion to give acetals of 3-butenal (232,233). [Pg.115]

Physical properties of glycerol are shown in Table 1. Glycerol is completely soluble in water and alcohol, slightly soluble in diethyl ether, ethyl acetate, and dioxane, and insoluble in hydrocarbons (1). Glycerol is seldom seen in the crystallised state because of its tendency to supercool and its pronounced freesing point depression when mixed with water. A mixture of 66.7% glycerol, 33.3% water forms a eutectic mixture with a freesing point of —46.5°C. [Pg.346]

Cyclic ether and acetal polymerizations are also important commercially. Polymerization of tetrahydrofuran is used to produce polyether diol, and polyoxymethylene, an excellent engineering plastic, is obtained by the ring-opening polymerization of trioxane with a small amount of cycHc ether or acetal comonomer to prevent depolymerization (see Acetal resins Polyethers, tetrahydrofuran). [Pg.246]

Iron(III) bromide [10031-26-2], FeBr, is obtained by reaction of iron or inon(II) bromide with bromine at 170—200°C. The material is purified by sublimation ia a bromine atmosphere. The stmcture of inoa(III) bromide is analogous to that of inon(III) chloride. FeBr is less stable thermally than FeCl, as would be expected from the observation that Br is a stronger reductant than CF. Dissociation to inon(II) bromide and bromine is complete at ca 200°C. The hygroscopic, dark red, rhombic crystals of inon(III) bromide are readily soluble ia water, alcohol, ether, and acetic acid and are slightly soluble ia Hquid ammonia. Several hydrated species and a large number of adducts are known. Solutions of inon(III) bromide decompose to inon(II) bromide and bromine on boiling. Iron(III) bromide is used as a catalyst for the bromination of aromatic compounds. [Pg.436]

Many other polymerization processes have been patented, but only some of them appear to be developed or under development ia 1996. One large-scale process uses an acid montmorrillonite clay and acetic anhydride (209) another process uses strong perfiuorosulfonic acid reski catalysts (170,210). The polymerization product ia these processes is a poly(tetramethylene ether) with acetate end groups, which have to be removed by alkaline hydrolysis (211) or hydrogenolysis (212). If necessary, the product is then neutralized, eg, with phosphoric acid (213), and the salts removed by filtration. Instead of montmorrillonite clay, other acidic catalysts can be used, such as EuUer s earth or zeoHtes (214—216). [Pg.364]

Pyrrohdinone (2-pyrrohdone, butyrolactam or 2-Pyrol) (27) was first reported in 1889 as a product of the dehydration of 4-aminobutanoic acid (49). The synthesis used for commercial manufacture, ie, condensation of butyrolactone with ammonia at high temperatures, was first described in 1936 (50). Other synthetic routes include carbon monoxide insertion into allylamine (51,52), hydrolytic hydrogenation of succinonitnle (53,54), and hydrogenation of ammoniacal solutions of maleic or succinic acids (55—57). Properties of 2-pyrrohdinone are Hsted in Table 2. 2-Pyrrohdinone is completely miscible with water, lower alcohols, lower ketones, ether, ethyl acetate, chloroform, and benzene. It is soluble to ca 1 wt % in aUphatic hydrocarbons. [Pg.359]

The acid occurs both as colorless triclinic prisms (a-form) and as monoclinic prisms ( 3-form) (8). The P-form is triboluminescent and is stable up to 137°C the a-form is stable above this temperature. Both forms dissolve in water, alcohol, diethyl ether, glacial acetic acid, anhydrous glycerol, acetone, and various aqueous mixtures of the last two solvents. Succinic acid sublimes with partial dehydration to the anhydride when heated near its melting point. [Pg.534]

Alternatively, thermal cracking of acetals or metal-catalyzed transvinylation can be employed. Vinyl acetate or MVE can be employed for transvinylation and several references illustrate the preparation especially of higher vinyl ethers by such laboratory techniques. Special catalysts and conditions are required for the synthesis of the phenol vinyl ethers to avoid resinous condensation products (6,7). Direct reaction of ethylene with alcohols has also been investigated (8). [Pg.514]

With Alcohols, Ethers, and Esters. Carbon monoxide reacts with alcohols, ethers, and esters to give carboxyHc acids. The reaction yielding carboxyHc acids is general for alkyl (53) and aryl alcohols (54). It is cataly2ed by rhodium or cobalt in the presence of iodide and provides the basis for a commercial process to acetic acid. [Pg.52]


See other pages where Acetals to ethers is mentioned: [Pg.150]    [Pg.63]    [Pg.493]    [Pg.46]    [Pg.445]    [Pg.150]    [Pg.63]    [Pg.493]    [Pg.46]    [Pg.445]    [Pg.879]    [Pg.976]    [Pg.117]    [Pg.160]    [Pg.271]    [Pg.152]    [Pg.529]    [Pg.180]    [Pg.68]    [Pg.78]    [Pg.81]    [Pg.503]    [Pg.381]    [Pg.233]    [Pg.103]    [Pg.178]    [Pg.538]    [Pg.246]   
See also in sourсe #XX -- [ Pg.703 ]




SEARCH



Acetals ether

Acetic ether

To ether

© 2024 chempedia.info