Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers Ethoxide

Sodium ethoxide gives an ether (Williamson s reaction). [Pg.103]

While the sodium ethoxide solution is cooling, prepare a solution of 7 7 g. of finely powdered iodine in 60 ml. of ether. When this solution is ready, add 9 ml. (9 6 g.) of ethyl malonate to the ethanolic sodium ethoxide solution, mix w ell and then allow to stand for 30-60 seconds not longer) then cautiously add the ethereal solution of the iodine, mixing thoroughly during the addition in order to avoid local overheating by the heat of the reaction. (If, after the ethyl malonate has been added to the sodium ethoxide, a considerable delay occurs before the iodine is added, the yield of the final product is markedly decreased.)... [Pg.276]

Higher alkyl ethers are prepared by treating the sodium derivative of the phaiol (made by adding the phenol to a solution of sodium ethoxide in ethyl alcohol) with the alkyl iodide or bromide (Williamson synthesis), for example ... [Pg.665]

Methylene iodide [75-11-6], CH2I2, also known as diio dome thane, mol wt 267.87, 94.76% I, mp 6.0°C, and bp 181°C, is a very heavy colorless Hquid. It has a density of 3.325 g/mL at 20°C and a refractive index of 1.7538 at 4°C. It darkens in contact with air, moisture, and light. Its solubiHty in water is 1.42 g/100 g H2O at 20°C it is soluble in alcohol, chloroform, ben2ene, and ether. Methylene iodide is prepared by reaction of sodium arsenite and iodoform with sodium hydroxide reaction of iodine, sodium ethoxide, and hydroiodic acid on iodoform the oxidation of iodoacetic acid with potassium persulfate and by reaction of potassium iodide and methylene chloride (124,125). Diiodoform is used for determining the density and refractive index of minerals. It is also used as a starting material in the manufacture of x-ray contrast media and other synthetic pharmaceuticals (qv). [Pg.366]

Thallium(1) salts of tetrahydridoborate and aluminate are obtained from a T1(I) compound, eg, ethoxide, perchlorate, or nitrate, and LiBH or LiAlH ia ether. ThaIlium(I) tetrahydridoborate [61204-71 -5] TIBH, is unstable at 40°C, evolving diborane. Thallium(I) tetrahydridoaluminate... [Pg.469]

Ethyl Vinyl Ether. The addition of ethanol to acetylene gives ethyl vinyl ether [104-92-2] (351—355). The vapor-phase reaction is generally mn at 1.38—2.07 MPa (13.6—20.4 atm) and temperatures of 160—180°C with alkaline catalysts such as potassium hydroxide and potassium ethoxide. High molecular weight polymers of ethyl vinyl ether are used for pressure-sensitive adhesives, viscosity-index improvers, coatings and films lower molecular weight polymers are plasticizers and resin modifiers. [Pg.416]

Reaction of 2-ethoxycarbonyl-l-phenylpyrazolidine with Meerwein s salt (boron trifluoride etherate) yields the quaternary ammonium salt (426) which is not stable and undergoes ring opening to the hydrazine (427) with sodium ethoxide (76JOC1244). [Pg.257]

Ethanol [64-17-5] M 46.1, b 78.3 , d 0.79360, d 0.78506, n 1.36139, pK 15.93. Usual impurities of fermentation alcohol are fusel oils (mainly higher alcohols, especially pentanols), aldehydes, esters, ketones and water. With synthetic alcohol, likely impurities are water, aldehydes, aliphatic esters, acetone and diethyl ether. Traces of benzene are present in ethanol that has been dehydrated by azeotropic distillation with benzene. Anhydrous ethanol is very hygroscopic. Water (down to 0.05%) can be detected by formation of a voluminous ppte when aluminium ethoxide in benzene is added to a test portion. Rectified... [Pg.231]

A fluormated enol ether formed by the reaction of sodium ethoxide with chlorotnfluoroethylene is much less reactive than the starting fluoroolefin To replace the second fluorine atom, it is necessary to reflux the reaction mixture. The nucleophilic substitution proceeds by the addition-elimination mechanism [30] (equation 26). [Pg.452]

This ester (70 g) and diethyl carbonate (250 mg) were stirred at 90°C to 100°C while a solution of sodium ethoxide [from sodium (7.8 g) and ethanol (1 54 ml)] was added over 1 hr. During addition, ethanol was allowed to distill and after addition distillation was continued until the column heat temperature reached 124°C. After cooling the solution to 90°C, dimethyl sulfate (33 ml) was followed by a further 85 ml of diethyl carbonate. This solution was stirred and refluxed for 1 hr and then, when Ice cool, was diluted with water and acetic acid (10 ml). The malonate was isolated in ether and fractionally distilled to yield a fraction boiling at 148°C to 153°C/0.075 mm, identified as the alpha-methyl malonate. This was hydrolyzed by refluxing for 1 hr at 2.5N sodium hydroxide (350 ml) and alcohol (175 ml), excess alcohol was distilled and the residual suspension of sodium salt was acidified with hydrochloric acid to give a precipitate of the alpha-methyl malonic acid. This was decarboxylated by heating at 180°C to 200°Cfor 30 minutes and recrystallized from petroleum ether (BP 80°C to 100°C) to give 2-(2-fluoro-4-biphenylyl)propionic acid, MP 110°C to 111°C. [Pg.690]

Sodium ethoxide from sodium (3.67 g) in absolute alcohol (64 ml) was added over 20 minutes with stirring to a mixture of ethyl 4-i-butylphenylacetate (28.14 g) and ethyl carbonate (102 ml) at lOO C. The reaction flask was fitted with a Fenske column through which alcohol and then ethyl carbonate distilled. After 1 hour when the still head reached 124°C heating was discontinued. Glacial acetic acid (12 ml) and water (50 ml) was added to the stirred ice-cooled mixture and the ester isolated in ether, washed with sodium carbonate solution, water and distilled to give ethyl 4-i-butylphenylmalonate. [Pg.797]

Ethyl 4-i-butylphenylmalonate (27.53 g) in absolute alcohol (25 ml) was added with stirring to a solution of sodium ethoxide from sodium (2.17 g) in absolute alcohol (75 ml). Ethyl iodide (15 ml) was added and the mixture refluxed for 2 A hours, the alcohol distilled and the residue diluted with water, extracted with ether, washed with sodium bisulfite, water, and evaporated to dryness. [Pg.797]

Dimethyl 4-ethoxy-2,7-dimethyl-4,5-dihydro-l 7/-azepine-3,6-dicarboxylate (1) with sodium ethoxide in refluxing diethyl ether, or on standing at room temperature in carbon tetrachloride solution, readily loses ethanol to yield dimethyl 2,7-dimethyl-4//-azepine-3,6-dicar-boxylate (2).29 The 4-methoxy derivative is also unstable and on warming at 100 C under reduced pressure loses methanol to yield the same product (44%).120... [Pg.125]

Broxton and Bunnett (1979) determined the products of the reaction of 4-chloro-3-nitrobenzenediazonium ions with ethoxide ion in ethanol, which is exactly analogous to the reaction in methanol discussed earlier in this section. These authors found 12.8% 4-chloro-3-nitrophenetole, 83% 2-chloronitrobenzene, and 0.8% 2-nitrophenetole. When the reaction was carried out in C2H5OD, the first- and second-mentioned products contained 99% D and 69% D respectively. Dediazoniation in basic ethanol therefore results in a higher yield of hydro-de-diazoniation with this diazonium salt compared with the reaction in methanol. This is probably due to the slightly higher basicity of the ethoxide ion and to the more facile formation of the radical CH3-CHOH (Packer and Richardson, 1975). Broxton and McLeish (1983 c) measured the rates of (Z) — (E) interconversion for some substituted 2-chlorophenylazo ethyl ethers in ethanol. [Pg.212]

Steady-state approximation competition experiments. The solvolysis of a-phenylethyl bromide (RX) in ethanol-ethoxide ion solution produces the ether, a substitution product. [Pg.119]

Base-induced eliminative ring fission, in which both the double bond and the sulfone function take part, has been observed in thiete dioxides253. The reaction can be rationalized in terms of initial Michael-type addition to the double bond of the ring vinyl sulfone, followed by a reverse aldol condensation with ring opening. The isolation of the ether 270c in the treatment of 6c with potassium ethoxide (since the transformation 267 -> 268 is not possible in this case) is in agreement with the reaction mechanism outlined in equation 101253. [Pg.455]

This is not a new reaction. This is just an Sn2 reaction. We are simply using the alkoxide ion (ethoxide in this case) to function as the attacking nucleophile. But notice the net result of this reaction we have combined an alcohol and an alkyl halide to form an ether. This process has a special name. It is called the Williamson Ether Synthesis. This process relies on an Sn2 reaction as the main step, and therefore, we must be careful to obey the restrictions of Sn2 reactions. It is best to use a primary alkyl halide. Secondary alkyl halides cannot be used because elimination will predominate over substitution (as seen in Sections 10.9), and tertiary alkyl halides certainly cannot be used. [Pg.330]


See other pages where Ethers Ethoxide is mentioned: [Pg.163]    [Pg.164]    [Pg.863]    [Pg.865]    [Pg.923]    [Pg.1002]    [Pg.95]    [Pg.100]    [Pg.109]    [Pg.445]    [Pg.328]    [Pg.26]    [Pg.77]    [Pg.42]    [Pg.63]    [Pg.232]    [Pg.103]    [Pg.225]    [Pg.228]    [Pg.540]    [Pg.546]    [Pg.547]    [Pg.97]    [Pg.445]    [Pg.197]    [Pg.198]    [Pg.212]    [Pg.372]    [Pg.262]    [Pg.333]    [Pg.102]    [Pg.1587]    [Pg.704]    [Pg.202]   
See also in sourсe #XX -- [ Pg.452 ]

See also in sourсe #XX -- [ Pg.61 , Pg.66 , Pg.701 , Pg.703 ]




SEARCH



Ethoxide

© 2024 chempedia.info