Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers drying

Add cautiously 15 ml. of concentrated sulphuric acid to 50 ml. of water in a 100 ml. distilling-flask, and then add 10 g. of pinacol hydrate. Distil the solution slowly. When about 40 ml. of distillate (consisting of pinacolone and water) have been collected, and no more pinacolone comes over, extract the distillate with ether. Dry the extract over sodium sulphate. Distil the dry filtered extract carefully, with the normal precautions for ether distillation (p. 164). When the ether has been removed, continue the distillation slowly, rejecting any fraction coming over below 100 . Collect the pinacolone, b.p. 106 , as a colourless liquid having a peppermint odour. Yield, 4 5-5 o g. A small quantity of higher-boiling material remains in the flask. [Pg.152]

Transfer the quinoline chlorozincate to a beaker, add a small quantity of water, and then add 10% sodium hydroxide solution until the initial precipitate of zinc hydroxide completely redissolves, and the free quinoline separates. Transfer the mixture to a separating-funnel, wash out the beaker with ether, adding the washings also to the solution in the funnel, and then extract the quinoline twice with ether. Dry the united ethereal extracts by adding an ample quantity of powdered potassium hydroxide and... [Pg.299]

Now run in a solution of 52 g. (53-5 ml.) of pure diethyl carbonate (1) in 70 ml. of anhydrous ether, with rapid stirring, over a period of about one hour. A vigorous reaction sets in and the ether refluxes continually. When the diethyl carbonate has been added, heat the flask on a water bath with stirring for another hour. Pour the reaction mixture, with frequent shaking, into a 2 litre round-bottomed flask containing 500 g. of crushed ice and a solution of 100 g. of ammonium chloride in 200 ml. of water. Transfer to a separatory funnel, remove the ether layer, and extract the aqueous solution with two 176 ml. portions of ether. Dry... [Pg.258]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

Into a 500 ml. three-necked flask, provided with a mechanical stirrer, a gas inlet tube and a reflux condenser, place 57 g. of anhydrous stannous chloride (Section 11,50,11) and 200 ml. of anhydrous ether. Pass in dry hydrogen chloride gas (Section 11,48,1) until the mixture is saturated and separates into two layers the lower viscous layer consists of stannous chloride dissolved in ethereal hydrogen chloride. Set the stirrer in motion and add 19 5 g. of n-amyl cyanide (Sections III,112 and III,113) through the separatory funnel. Separation of the crystalline aldimine hydrochloride commences after a few minutes continue the stirring for 15 minutes. Filter oflF the crystalline solid, suspend it in about 50 ml. of water and heat under reflux until it is completely hydrolysed. Allow to cool and extract with ether dry the ethereal extract with anhydrous magnesium or calcium sulphate and remove the ether slowly (Fig. II, 13, 4, but with the distilling flask replaced by a Claisen flask with fractionating side arm). Finally, distil the residue and collect the n-hexaldehyde at 127-129°. The yield is 19 g. [Pg.324]

Equip a 1-litre three-necked flask with a mechanical stirrer, a separatory funnel and a thermometer. Place a solution of 47 g. of sodium cyanide (or 62 g. of potassium cyanide) in 200 ml. of water in the flask, and introduce 58 g. (73-5 ml.) of pure acetone. Add slowly from the separatory fumiel, with constant stirring, 334 g. (275 ml.) of 30 per cent, sulphuric acid by weight. Do not allow the temperature to rise above 15-20° add crushed ice, if necessary, to the mixture by momentarily removing the thermometer. After all the acid has been added continue the stirring for 15 minutes. Extract the reaction mixture with three 50 ml. portions of ether, dry the ethereal extracts with anhydrous sodium or magnesium sulphate, remove most of the ether on a water bath and distil the residue rapidly under diminished pressure. The acetone cyanohydrin passes over at 80-82°/15 mm. The yield is 62 g. [Pg.348]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Mix together in a 250 ml. flask carrying a reflux condenser and a calcium chloride drying tube 25 g. (32 ml.) of freshly-distilled acetaldehyde with a solution of 59-5 g. of dry, powdered malonic acid (Section 111,157) in 67 g. (68-5 ml.) of dry pyridine to which 0-5 ml. of piperidine has been added. Leave in an ice chest or refrigerator for 24 hours. Warm the mixture on a steam bath until the evolution of carbon dioxide ceases. Cool in ice, add 60 ml. of 1 1 sulphuric acid (by volume) and leave in the ice bath for 3-4 hours. Collect the crude crotonic acid (ca. 27 g.) which has separated by suction filtration. Extract the mother liquor with three 25 ml. portions of ether, dry the ethereal extract, and evaporate the ether the residual crude acid weighs 6 g. Recrystallise from light petroleum, b.p. 60-80° the yield of erude crotonic acid, m.p. 72°, is 20 g. [Pg.464]

Pour the reaction mixture cautiously into 400 g. of crushed ice and acidify it in the cold by the addition of a solution prepared by adding 55 ml. of concentrated sulphuric acid to 150 ml. of water and then coohng to 0°. Separate the ether layer and extract the aqueous layer twice with 50 ml. portions of ether. Dry the combined ethereal solutions over 50 g. of anhydrous potassium carbonate and distil the filtered solution thror h a Widmer column (Figs. II, 17, 1 and II, 24, 4). Collect separately the fraction boihng up to 103°, and the dimethylethynyl carbinol at 103-107° Discard the high boiling point material. Dry the fraction of low boihng point with anhydrous potassium carbonate and redistil. The total 3 ield is 75 g. [Pg.468]

In a 2-litre round-bottomed flask, equipped with a double surface condenser, place 60 g. of triniethylene dicyanide (Section 111,114) and 900 g. of 50 per cent, sulphuric acid (by weight). Reflux the mixture for 10 hours and allow to cool. Saturate the solution with ammonium sul phate and extract wit-h four 150 ml. portions of ether dry the ethereal extracts with anhydrous sodium or magnesium sulphate. Distil off the ether on a water bath the residual glutaric acid (69 g.) crystallises on cooling and has m.p. 97-97-5°. Upon recrystalhsation from chloroform, or benzene, or benzene mixed with 10 per cent, by weight of ether, the m.p. is 97 -5-98°. [Pg.491]

Di lve 20 g. of the cyano ester in 100 ml. of rectified spirit and add a solution of 19 2 g. of pure potassium cyanide in 40 ml. of water. Allow to stand for 48 hours, then distil oflF the alcohol on a water bath. Add a large excess of concentrated hydrochloric acid and heat under reflux for 3 hours. Dilute with water, saturate the solution with ammonium sulphate, and extract with four 75 ml. portions of ether. Dry the combined ethereal extracts with anhydrous sodium or magnesium sulphate, and distil off the ether. RecrystaUise the residual acid from excess concentrated hydrochloric acid, and dry in the air. The yield of pure ew-dimethyl-succinic acid, m.p. 141-142°, is 12 g. [Pg.495]

Into a 500 ml. round-bottomed flask, fitted with a reflux condenser, place 42 g. of potassium hydroxide pellets and 120 g. (152 ml.) of absolute ethyl alcohol. Heat under reflux for 1 hour. Allow to cool and decant the liquid from the residual solid into another dry 500 ml. flask add 57 g. (45 ml.) of A.R. carbon dtsulphide slowly and with constant shaking. Filter the resulting almost solid mass, after cooling in ice, on a sintered glass funnel at the pump, and wash it with two 25 ml. portions of ether (sp. gr. 0-720), followed by 25 ml. of anhydrous ether. Dry the potassium ethyl xanthate in a vacuum desiccator over silica gel. The yield is 74 g. If desired, it ma be recrystallised from absolute ethyl alcohol, but this is usually unneceasary. [Pg.499]

Separate the upper hydrocarbon layer from the distillate and extract the aqueous layer twice with 20 ml. portions of ether dry the combined upper layer and ethereal extracts with anhydrous magnesium sulphate, remove the ether on a water bath, and distil the residue from a 50 ml. Claisen flask. Collect the ethylbenzene at 135-136° the yield is 20 g. By extracting the s3Tupy liquid in the reaction flask with three 30 ml. portions of ether, a further 2 g. of ethylbenzene, b.p. 136°, may be obtained. Note,... [Pg.516]

Benzylatnine. Warm an alcoholic suspension of 118-5 g. of finely-powdered benzyl phthalimide with 25 g. of 100 per cent, hydrazine hydrate (CAUTION corrosive liquid) a white, gelatinous precipitate is produced rapidly. Decompose the latter (when its formation appears complete) by heating with excess of hydrochloric acid on a steam bath. Collect the phthalyl hydrazide which separates by suction filtration, and wash it with a little water. Concentrate the filtrate by distillation to remove alcohol, cool, filter from the small amount of precipitated phthalyl hydrazide, render alkaline with excess of sodium hydroxide solution, and extract the liberated benzylamine with ether. Dry the ethereal solution with potassium hydroxide pellets, remove the solvent (compare Fig. //, 13, 4) on a water bath and finally distil the residue. Collect the benzylamine at 185-187° the 3ueld is 50 g. [Pg.569]

Reduction of methyl orange to />-aminodimethylaniline. Method 1. Dissolve 2 0 g. of methyl orange in the minimum volume of hot water and to the hot solution add a solution of 8 g. of stannous chloride in 20 ml. of concentrated hydrochloric acid until decolourisation takes place gentle boiling may be necessary. Cool the resulting solution in ice a crystalline precipitate consisting of sulphanilic acid and some p-aminodimethylaniline hydrochloride separates out. In order to separate the free base, add 10 per cent, sodium hydroxide solution until the precipitate of tin hydroxide redisaolves. Extract the cold solution with three or four 20 ml. portions of ether, dry the extract... [Pg.624]

Dissolve the solid in 700 ml. of water in a 1500 ml. round-bottomed flask, and add a solution of 88 ml. of concentrated sulphuric acid in about 200 ml. of water until the liquid has a distinct odour of sulphur dioxide sufficient heat will be liberated in the neutralisation to cause the solution to boil. Immediately steam distil the liquid (Fig. II, 40, 1 it is better to use the apparatus shown in Fig. II, 41, 3) until a sample of the distillate gives only a slight precipitate with bromine water. About 700 ml. of distillate should be collected. Saturate the steam distillate with salt, extract the dl with ether, dry the extract with a little anhydrous magnesium or calcium sulphate, distil oflF the ether (compare Fig. II, 13, 4, but with a 50 ml. Claisen flask replacing the distilling flask) and distil the residue under diminished pressure. Collect the p-cresol at 95-96°/15 mm. the colourless liquid solidifies to a white crystalline solid, m.p. 31°. The yield is 24 g. [Pg.667]

In a 250 ml. conical flask mix a solution of 14 g. of sodium hydroxide in 40 ml. of water and 21 g. (20 ml.) of pure benzaldehyde (Section IV,115). Add 15 g. of hydroxylamine hydrochloride in small portions, and shake the mixture continually (mechanical stirring may be employed with advantage). Some heat is developed and the benzaldehyde eventually disappears. Upon coohiig, a crystalline mass of the sodium derivative separates out. Add sufficient water to form a clear solution, and pass carbon dioxide into the solution until saturated. A colourless emulsion of the a or syn-aldoxime separates. Extract the oxime with ether, dry the extract over anhydrous magnesium or sodium sulphate, and remove the ether on a water bath. Distil the residue under diminished pressure (Fig. 11,20, 1). Collect the pure syn-benzaldoxime (a-benzald-oxime) at 122-124°/12 mm. this gradually solidifies on cooling in ice and melts at 35°. The yield is 12 g. [Pg.719]

Steam distil from a 1 - 5 litre three-necked flask until the odour of nitrobenzene is no longer perceptible in the distillate (6-12 hours). Extract the cold residue with three 100 ml. portions of ether, dry the combined extracts with anhydrous magnesium sulphate, and distil oflF the ether. The residue solidifies and consists of almost pure methyl P-naphthyl ketone, m.p. 52° the yield is 30 g. Upon recrystallisation from glacial acetic acid, the m.p. is raised to 54°. [Pg.731]

Amino-5-methylthiazole. Suspend 76 g. of thiourea in 200 ml. of water in a 500 ml. three-necked flask equipped as in the preceding pre paration. Stir and add 92 -5 g. (80 ml.) of monochloroacetone (1) over a period of 30 minutes. The thiourea dissolves as the reaction proceeds and the temperature rises. Reflux the yellow solution for 2 hours. To the cold solution immersed in an ice bath add, with stirring, 200 g. of solid sodium hydroxide. Transfer to a separatory funnel, add a little ice water, separate the upper oil layer and extract the aqueous layer with three 100 ml. portions of ether. Dry the combined oil and ether extracts with anhydrous magnesium sulphate, remove the ether by distillation from a steam bath, and distil the residual oil under diminished pressure. Collect the 2-amino-5-methylthiazole at 130-133°/18 mm. it solidifies on coohng in ice to a solid, m.p. 44-45°. The yield is 84 g. [Pg.841]

Method 1. Reflux a mixture of pure nicotinic acid (Section V,22), 84 g. (105 ml.) of absolute ethanol and 90 g. (50 ml.) of concentrated sulphuric acid in a flask for 4 hours on a steam bath. Cool the solution and pour it slowly and with stirring on to 200 g. of crushed ice. Add sufficient ammonia solution to render the resulting solution strongly alkaline generally, some ester separates as an oil but most of it remains dissolved in the alkaline solution. Extract the solution with five 25 ml. portions of ether, dry the combined ethereal extracts with anhydrous magnesium sulphate, remove the ether and distil under reduced pressure. The ethyl nicotinate passes over at 117-118°/ 6 mm. the yield is 34 g. The b.p. under normal pressure is 222-224°. [Pg.849]


See other pages where Ethers drying is mentioned: [Pg.277]    [Pg.302]    [Pg.309]    [Pg.399]    [Pg.256]    [Pg.258]    [Pg.355]    [Pg.356]    [Pg.419]    [Pg.469]    [Pg.481]    [Pg.488]    [Pg.493]    [Pg.497]    [Pg.540]    [Pg.573]    [Pg.611]    [Pg.612]    [Pg.641]    [Pg.680]    [Pg.698]    [Pg.703]    [Pg.704]    [Pg.769]    [Pg.786]    [Pg.842]    [Pg.850]    [Pg.858]    [Pg.860]    [Pg.863]    [Pg.877]   
See also in sourсe #XX -- [ Pg.786 ]




SEARCH



Action of Carbon Dioxide on Sodium Acetylides in Dry Ether

Cooling bath, Dry Ice and ethylene glycol monomethyl ether

Drying of ether

Drying, diethyl ether

© 2024 chempedia.info