Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Error global

There are several methods for calculating estimates of the solution error in discrete approximations of boundary- or initial-value problems. In developing error indicators it is always desirable if not theoretically necessary to ensure that the error indicator be bounded above and below by the actual error globally in some appropriate norm, i.e., one attempts to construct a number 0, called the global error indicator, which has the properties... [Pg.3]

Computational issues that are pertinent in MD simulations are time complexity of the force calculations and the accuracy of the particle trajectories including other necessary quantitative measures. These two issues overwhelm computational scientists in several ways. MD simulations are done for long time periods and since numerical integration techniques involve discretization errors and stability restrictions which when not put in check, may corrupt the numerical solutions in such a way that they do not have any meaning and therefore, no useful inferences can be drawn from them. Different strategies such as globally stable numerical integrators and multiple time steps implementations have been used in this respect (see [27, 31]). [Pg.484]

As mentioned earlier, overall accuracy of finite element computations is directly detennined by the accuracy of the method employed to obtain the numerical solution of the global system of algebraic equations. In practical simulations, therefore, computational errors which are liable to affect the solution of global stiffness equations should be carefully analysed. [Pg.206]

Crowe, C.M., Recursive Identification of Gross Errors in Linear Data Reconciliation, AJChE Journal, 34(4), 1988,541-550. (Global chi square test, measurement test)... [Pg.2545]

The last area addressed by the systems approach is concerned with global issues involving the influence of organizational factors on human error. The major issues in this area are discussed in Chapter 2, Section 7. The two major perspectives that need to be considered as part of an error reduction program are the creation of an appropriate safety culture and the inclusion of human error reduction within safety management policies. [Pg.22]

The other global dimension of the systems approach is the need for the existence of policies which address human factors issues at senior levels in the company. This implies that senior management realizes that resources spent on programs to reduce error will be as cost-effective as investments in engineered safety systems. [Pg.22]

Error free operation and maintenance can only occur within an effective management system. At the level of the task itself, this is provided by operating instructions. However, at a more global level, separate tasks have to be organized in a systematic manner, particularly if hazardous operations are involved, and where several individuals need to coordinate to achieve an overall objective. This section illustrates some accidents due to poor organization of work or failure to carry out checks. [Pg.32]

This section illustrates some of the more global influences at the organizational level which create the preconditions for error. Inadequate policies in areas such as the design of the human-machine interface, procedures, training, and the organization of work will also have contributed implicitly to many of the other human errors considered in this chapter. [Pg.35]

Advocates of the global approach would argue that human activities are essentially goal-directed (the cognitive view expressed in Chapter 2), and that this cannot be captured by a simple decomposition of a task into its elements. They also state that if an intention is correct (on the basis of an appropriate diagnosis of a situation), then errors of omission in skill-based actions are imlikely, because feedback will constantly provide a comparison between the expected and actual results of the task. From this perspective, the focus would be on the reliability of the cognitive rather than the action elements of the task. [Pg.225]

PROBLEM DEFINITION, QUALITATIVE ERROR PREDICTION AND REPRESENTATION. The recommended problem definition and qualitative error prediction approach for use with SLIM has been described in Section 5.3.1 and 5.3.2. The fact that PIFs are explicitly assessed as part of this approach to qualitative error prediction means that a large proportion of the data requirements for SLIM are already available prior to quantification. SLIM usually quantifies tasks at whatever level calibration data are available, that is, it does not need to perform quantification by combining together task element probabilities from a data base. SLIM can therefore be used for the global quantification of tasks. Task elements quantified by SLIM may also be combined together using event trees similar to those used in THERP. [Pg.235]

An error function depending on parameters. Only minima are of interest, and the global minimum is usually (but not always) desired. This may for example be determination of parameters in a force field, a set of atomic charges, or a set of localized Molecular Orbitals. [Pg.316]

Interestingly, if one Taylor series expands Eq. (36) and equates the terms of the same order in kj with Eq. (37) one can derive the standard Lagrangian FD approximations (i.e., require the coefficient of kj to be —1, and require the coefficient of all other orders in kj up to the desired order of approximation to be 0.) A more global approach is to attempt to fit Eq. (36) to Eq. (37) over some range of Kj = kjA values that leads to a maximum absolute error between Eq. (36) and Eq. (37) less than or equal to some prespecrfied value, E. This is the essential idea of the dispersion-fitted finite difference method [25]. [Pg.15]

In the second state the two terms depending on the l-and 2-HRDM compensate their errors to a large extent but nevertheless the hole -electron positive energy is too low and a global lowering of this state energy results. [Pg.65]

In this study where we are interested in isotope substituted systems, that is in systems with the same electronic wave function, a more global approach can be used. From Table 2 it is obvious that MP3 calculations give the best overall results. The compensation of errors that we find here is a general characteristic of this level of wave function, as illustrated by previous calculations on various series of molecules [16]. Thus, we will use the MP3 level of theory together with the formula... [Pg.404]

Fig. 4.3. (A) Composite multispecies benthic foraminiferal Mg/Ca records from three deep-sea sites DSDP Site 573, ODP Site 926, and ODP Site 689. (B) Species-adjusted Mg/Ca data. Error bars represent standard deviations of the means where more than one species was present in a sample. The smoothed curve through the data represents a 15% weighted average. (C) Mg temperature record obtained by applying a Mg calibration to the record in (B). Broken line indicates temperatures calculated from the record assuming an ice-free world. Blue areas indicate periods of substantial ice-sheet growth determined from the S 0 record in conjunction with the Mg temperature. (D) Cenozoic composite benthic foraminiferal S 0 record based on Atlantic cores and normalized to Cibicidoides spp. Vertical dashed line indicates probable existence of ice sheets as estimated by (2). 3w, seawater S 0. (E) Estimated variation in 8 0 composition of seawater, a measure of global ice volume, calculated by substituting Mg temperatures and benthic 8 0 data into the 8 0 paleotemperature equation (Lear et al., 2000). Fig. 4.3. (A) Composite multispecies benthic foraminiferal Mg/Ca records from three deep-sea sites DSDP Site 573, ODP Site 926, and ODP Site 689. (B) Species-adjusted Mg/Ca data. Error bars represent standard deviations of the means where more than one species was present in a sample. The smoothed curve through the data represents a 15% weighted average. (C) Mg temperature record obtained by applying a Mg calibration to the record in (B). Broken line indicates temperatures calculated from the record assuming an ice-free world. Blue areas indicate periods of substantial ice-sheet growth determined from the S 0 record in conjunction with the Mg temperature. (D) Cenozoic composite benthic foraminiferal S 0 record based on Atlantic cores and normalized to Cibicidoides spp. Vertical dashed line indicates probable existence of ice sheets as estimated by (2). 3w, seawater S 0. (E) Estimated variation in 8 0 composition of seawater, a measure of global ice volume, calculated by substituting Mg temperatures and benthic 8 0 data into the 8 0 paleotemperature equation (Lear et al., 2000).
Figure 4.1 Time-course of free-radical production during aerobic (a) or anoxic (b) reperfusion of the isolated rat heart. Radical production was assessed using e.s.r. and quantified as the formation of a Af-tert-butyl-a-phenylnitrone (PBN) spin adduct. After a 35 min stabilization period of aerobic perfusion, hearts were made globally ischaemic for 15 min. Hearts were then reperfused, either with oxygenated buffer (a) (n = 6), or with anoxic buffer, switching to an oxygenated buffer after 10 min (b) (n = 5). The bars represent the standard errors of the means. Redrawn with permission from Garlick et af. (1987). Figure 4.1 Time-course of free-radical production during aerobic (a) or anoxic (b) reperfusion of the isolated rat heart. Radical production was assessed using e.s.r. and quantified as the formation of a Af-tert-butyl-a-phenylnitrone (PBN) spin adduct. After a 35 min stabilization period of aerobic perfusion, hearts were made globally ischaemic for 15 min. Hearts were then reperfused, either with oxygenated buffer (a) (n = 6), or with anoxic buffer, switching to an oxygenated buffer after 10 min (b) (n = 5). The bars represent the standard errors of the means. Redrawn with permission from Garlick et af. (1987).
Table 4.1 Effect of selected thiols, disulphides, amino acids and antioxidants on the time to the onset and the time to reach maximal ischaemic contracture in isolated perfused rat hearts. Hearts were perfused for a control period of 10 min at the end of which global low-flow (10% of control) ischaemia was initiated. The interventions described above were included in the perfusion fluid 5 min prior to the onset and throughout the ischaemic period. The data are shown as means standard errors of the means (n = 6)... Table 4.1 Effect of selected thiols, disulphides, amino acids and antioxidants on the time to the onset and the time to reach maximal ischaemic contracture in isolated perfused rat hearts. Hearts were perfused for a control period of 10 min at the end of which global low-flow (10% of control) ischaemia was initiated. The interventions described above were included in the perfusion fluid 5 min prior to the onset and throughout the ischaemic period. The data are shown as means standard errors of the means (n = 6)...

See other pages where Error global is mentioned: [Pg.225]    [Pg.88]    [Pg.225]    [Pg.88]    [Pg.127]    [Pg.464]    [Pg.2109]    [Pg.100]    [Pg.409]    [Pg.246]    [Pg.694]    [Pg.474]    [Pg.2572]    [Pg.30]    [Pg.215]    [Pg.216]    [Pg.494]    [Pg.775]    [Pg.256]    [Pg.436]    [Pg.183]    [Pg.127]    [Pg.39]    [Pg.191]    [Pg.191]    [Pg.115]    [Pg.545]    [Pg.428]    [Pg.303]    [Pg.49]    [Pg.310]    [Pg.311]    [Pg.214]    [Pg.243]   
See also in sourсe #XX -- [ Pg.52 , Pg.53 ]

See also in sourсe #XX -- [ Pg.251 ]

See also in sourсe #XX -- [ Pg.62 , Pg.64 ]




SEARCH



Global error increment

Global estimation error

Local and Global Errors

© 2024 chempedia.info