Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons equilibria

Attempts to correlate total NO emissions on an absolute basis have met with varying degrees of success. However, all investigators found that correlation required a system more detailed than the two-step Zeldo-vich scheme—Reactions 1 and 2—and equilibrium hydrocarbon chemistry. Thompson et al. (15) obtained satisfactory agreement with experimental NO formation in an oscillating combustor by using the Zeldovich reactions in conjunction with a more advanced hydrocarbon scheme. He assumed an equilibrium of the following reactions and used them with measured H2 concentrations to calculate [O] for the NO formation ... [Pg.222]

Although alumina is lost from the zeolite framework, this loss is not always accompanied by a serious loss of activity. This can partly be explained by the formation of very strong acid sites during dealumination, but more likely this is caused by the high rate of the C-C bond formation and scission reactions on the acid sites. The cracking-oligomerisation reactions, which are much faster than dehydrocyclisation, quickly establish a pseudo-equilibrium hydrocarbon mixture that is independent of the size of the... [Pg.28]

Zenz FA, Smith R. When are fines at equilibrium. Hydrocarbon Processing 51 104-106, 1972. [Pg.245]

American Petroleum Institute, Bibliographies on Hydrocarbons, Vols. 1-4, "Vapor-Liquid Equilibrium Data for Hydrocarbon Systems" (1963), "Vapor Pressure Data for Hydrocarbons" (1964), "Volumetric and Thermodynamic Data for Pure Hydrocarbons and Their Mixtures" (1964), "Vapor-Liquid Equilibrium Data for Hydrocarbon-Nonhydrocarbon Gas Systems" (1964), API, Division of Refining, Washington. [Pg.7]

If inert material is to be added, then ease of separation is an important consideration. For example, steam is added as an inert to hydrocarbon cracking reactions and is an attractive material in this respect because it is easily separated from the hydrocarbon components by condensation. If the reaction does not involve any change in the number of moles, inert material has no effect on equilibrium conversion. [Pg.36]

The true vapor pressure of hydrocarbons is expressed in bar and represents the vapor pressure directly above a saturated liquid in equilibrium with the vapor that rises over it. [Pg.156]

Equilibrium between a Hydrocarbon Liquid and a Partially Miscible Liquid... [Pg.171]

Edmister, W.C. and K.K. Okamoto (1959), Applied hydrocarbon thermodynamics. Part 12 equilibrium flash vaporization correlations for petroleum fractions . Petroleum Refiner, Vol. 38, No. 8, p. 117. [Pg.455]

A thin film of hydrocarbon spread on a horizontal surface of quartz will experience a negative dispersion interaction. Treating these as 1 = quartz, 2 = n-decane, 3 = vacuum, determine the Hamaker constant A123 for the interaction. Balance the negative dispersion force (nonretarded) against the gravitational force to find the equilibrium film thickness. [Pg.251]

A fundamental difference exists between conventional acid-catalyzed and superacidic hydrocarbon chemistry. In the former, trivalent car-benium ions are always in equilibrium with olefins, which play the key role, whereas in the latter, hydrocarbon transformation can take place without the involvement of olefins through the intermediacy of five-coordinate carbocations. [Pg.165]

Protonation of formic acid similarly leads, after the formation at low temperature of the parent carboxonium ion, to the formyl cation. The persistent formyl cation was observed by high-pressure NMR only recently (Horvath and Gladysz). An equilibrium with diprotonated carbon monoxide causing rapid exchange can be involved, which also explains the observed high reactivity of carbon monoxide in supera-cidic media. Not only aromatic but also saturated hydrocarbons (such as isoalkanes and adamantanes) can be readily formylated. [Pg.196]

The relative basicities of aromatic hydrocarbons, as represented by the equilibrium constants for their protonation in mixtures of hydrogen fluoride and boron trifluoride, have been measured. The effects of substituents upon these basicities resemble their effects upon the rates of electrophilic substitutions a linear relationship exists between the logarithms of the relative basicities and the logarithms of the relative rate constants for various substitutions, such as chlorination and... [Pg.113]

The solubility of hydrogen chloride in solutions of aromatic hydrocarbons in toluene and in w-heptane at —78-51 °C has been measured, and equilibrium constants for Tr-complex formation evaluated. Substituent effects follow the pattern outlined above (table 6.2). In contrast to (T-complexes, these 7r-complexes are colourless and non-conducting, and do not take part in hydrogen exchange. [Pg.117]

Relative equilibrium ion-pair acidities have been determined by Streit-wieser and Scannon (434) for thiazole and several heterocyclic compounds by reference to hydrocarbon indicators. The pK values for the... [Pg.118]

The carbon-metal bonds of organolithium and organomagnesium compounds have appreciable carbamomc character Carbanions rank among the strongest bases that we 11 see m this text Their conjugate acids are hydrocarbons—very weak acids indeed The equilibrium constants for ionization of hydrocarbons are much smaller than the s for water and alcohols thus hydrocarbons have much larger pA s... [Pg.593]

The MTDP process, which is similar to the Tatoray process, produces an equilibrium composition of xylene isomers. A -xylene yield of 24% in the xylene product is formed at 42—48 wt % toluene conversion over the heterogeneous catalyst at 390—495°C, 4.2 MPa (600 psig), 1 2 Hquid hourly space velocity, and 4 H2/hydrocarbon molar feed ratio. A new ZSM-5 catalyst, which has higher activity and stability than the current catalyst, has been reported (93). [Pg.53]

Since polar solvents would be expected to stabilize polar forms, a retreat towards the hydroxy tautomer (71) would be predicted in solvents less polar than water, and in the vapour phase. This is borne out in practice at equilibrium both 2- and 4-hydroxypyridine (as well as the 3-hydroxy compound, which even in water exists as an approximate 1 1 mixture of OH and NH forms) exist as such, rather than as the pyridinones. However, the 2- and 4-quinolinones remain in the NH (keto) forms, even in the vapour phase. Hydrocarbon or other solvents of very low polarity would be expected to give results similar to those in the vapour phase, but intermolecular association by hydrogen bonding often leads to a considerably greater proportion of polar tautomers being present than would otherwise have been predicted (77ACR186, 78JOC177). [Pg.26]

Vapor densities for pure compounds can also be predicted by cubic equations of state. For hydrocarbons, relatively accurate Redlich-Kwong-type equations such as the Soave and Peng-Robinson equations are often used. Both require only T, and (0 as inputs. For organic compounds, the Lee-Erbar-EdmisteF" equation (which requires the same input parameters) has been used with errors essentially equivalent to those determined for the Lydersen method. While analytical equations of state are not often used when only densities are required, values from equations of state are used as inputs to equation of state formulations for thermal and equilibrium properties. [Pg.402]

As discussed in Sec. 4, the icomplex function of temperature, pressure, and equilibrium vapor- and hquid-phase compositions. However, for mixtures of compounds of similar molecular structure and size, the K value depends mainly on temperature and pressure. For example, several major graphical ilight-hydrocarbon systems. The easiest to use are the DePriester charts [Chem. Eng. Prog. Symp. Ser 7, 49, 1 (1953)], which cover 12 hydrocarbons (methane, ethylene, ethane, propylene, propane, isobutane, isobutylene, /i-butane, isopentane, /1-pentane, /i-hexane, and /i-heptane). These charts are a simplification of the Kellogg charts [Liquid-Vapor Equilibiia in Mixtures of Light Hydrocarbons, MWK Equilibnum Con.stants, Polyco Data, (1950)] and include additional experimental data. The Kellogg charts, and hence the DePriester charts, are based primarily on the Benedict-Webb-Rubin equation of state [Chem. Eng. Prog., 47,419 (1951) 47, 449 (1951)], which can represent both the liquid and the vapor phases and can predict K values quite accurately when the equation constants are available for the components in question. [Pg.1248]

However, the total number of equilibrium stages N, N/N,n, or the external-reflux ratio can be substituted for one of these three specifications. It should be noted that the feed location is automatically specified as the optimum one this is assumed in the Underwood equations. The assumption of saturated reflux is also inherent in the Fenske and Underwood equations. An important limitation on the Underwood equations is the assumption of constant molar overflow. As discussed by Henley and Seader (op. cit.), this assumption can lead to a prediction of the minimum reflux that is considerably lower than the actual value. No such assumption is inherent in the Fenske equation. An exact calculational technique for minimum reflux is given by Tavana and Hansen [Jnd. E/ig. Chem. Process Des. Dev., 18, 154 (1979)]. A computer program for the FUG method is given by Chang [Hydrocarbon Process., 60(8), 79 (1980)]. The method is best applied to mixtures that form ideal or nearly ideal solutions. [Pg.1274]

Based on an average tray efficiency of 90 percent for the hydrocarbons, the eqiiilibniim-based model calculations were made with 36 equilibrium stages. The results for the distillate and bottoms compositions, which were very close to those computed by the rate-based method, were a distillate with 0.018 mol % ethylbenzene and less than 0.0006 mol % styrene, and a bottoms product with only a trace of methanol and 0.006 mol % toluene. [Pg.1292]

The smallest expanders usually use oil with a viscosity at 38° C (100° F) of 60 to 100 SSU, and large machines up to 500 SSU. If the oil is kept in a totally enclosed system in contact with hydrocarbon or another partly soluble gas, which would dissolve and reduce the viscosity of the oil, then a compensating higher viscosity should be used so that the working viscosity after ultimate equilibrium with such gas is suitable for the bearings. [Pg.2523]

This is a 4 2 reaction, and is thus pressure dependent. However, it is necessary to compute the equilibrium partial pressure of some alternative gaseous species, such as SiCls, and other hydrocarbons such as C2H2 and for this a Gibbs energy minimization calculation should be made. [Pg.94]

A closer analysis of die equilibrium products of the 1 1 mixture of methane and steam shows the presence of hydrocarbons as minor constituents. Experimental results for die coupling reaction show that the yield of hydrocarbons is dependent on the redox properties of the oxide catalyst, and the oxygen potential of the gas phase, as well as die temperamre and total pressure. In any substantial oxygen mole fraction in the gas, the predominant reaction is the formation of CO and the coupling reaction is a minor one. [Pg.142]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

When the acidities of hydrocarbons are discussed in terms of the relative stabilities of neutral and anionic forms, particularly with respect to the extent of electron delocalization in the anion, the appropriate data are equilibrium acidity measurements. We have just seen... [Pg.406]

An extensive series of hydrocarbons has been studied in cyclohexylamine, with the use of cesium cyclohexylamide as base. For many of the compounds studied, spectroscopic measurements were used to determine the relative extent of deprotonation of two hydrocarbons and thus establish relative acidity. For other hydrocarbons, the acidity was derived by kinetic measurements. It was shown that the rate of tritium exchange for a series of related hydrocarbons is linearly related to the equilibrium acidities of these hydrocarbons in the solvent system. This method was used to extend the scale to hydrocarbons such as toluene for which the exchange rate, but not equilibrium data, can be obtained. Representative values of some hydrocarbons withpAT values ranging from 16 to above 40 are given in Table 7.2. [Pg.408]


See other pages where Hydrocarbons equilibria is mentioned: [Pg.491]    [Pg.816]    [Pg.603]    [Pg.108]    [Pg.350]    [Pg.491]    [Pg.816]    [Pg.603]    [Pg.108]    [Pg.350]    [Pg.114]    [Pg.1106]    [Pg.133]    [Pg.329]    [Pg.286]    [Pg.53]    [Pg.127]    [Pg.1264]    [Pg.1281]    [Pg.1327]    [Pg.1543]    [Pg.2411]    [Pg.98]    [Pg.92]    [Pg.248]    [Pg.294]   
See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Carbon dioxide-hydrocarbon equilibria

Hydrocarbon molecules equilibria pressure effects

Hydrocarbon vapor-liquid equilibrium

K-Factor hydrocarbon equilibrium

Phase Equilibria for a Pure Hydrocarbon

Water Content of Liquid Hydrocarbon in Equilibrium with Hydrates

© 2024 chempedia.info