Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic parts

A convenience of electronic basis functions (53) is that they reduce at infinitesimal-amplitude bending to (28) with the same meaning of the angle 9 we may employ these asymptotic forms in the computation of the matrix elements of the kinetic energy operator and in this way avoid the necessity of carrying out calculations of the derivatives of the electronic wave functions with respect to the nuclear coordinates. The electronic part of the Hamiltonian is represented in the basis (53) by... [Pg.522]

Let us examine a special but more practical case where the total molecular Hamiltonian, H, can be separated to an electronic part, W,.(r,s Ro), as is the case in the usual BO approximation. Consequendy, the total molecular wave function fl(R, i,r,s) is given by the product of a nuclear wave function X uc(R, i) and an electronic wave function v / (r, s Ro). We may then talk separately about the permutational properties of the subsystem consisting of electrons, and the subsystemfs) formed of identical nuclei. Thus, the following commutative laws Pe,Hg =0 and =0 must be satisfied X =... [Pg.568]

Metal powder—glass powder—binder mixtures are used to apply conductive (or resistive) coatings to ceramics or metals, especially for printed circuits and electronics parts on ceramic substrates, such as multichip modules. Multiple layers of aluminum nitride [24304-00-5] AIN, or aluminay ceramic are fused with copper sheet and other metals in powdered form. The mixtures are appHed as a paste, paint, or slurry, then fired to fuse the metal and glass to the surface while burning off the binder. Copper, palladium, gold, silver, and many alloys are commonly used. [Pg.138]

C. P. on.. Application of Polymers in Encapsulation of Electronic Parts, Advances of Polymer Science, Vol. 84, Springer-Vedag, Berlin, 1988, pp. 63—83. [Pg.194]

Nonelectronic Parts Reliability Data I99P (NPRD-91) and Eailure Mode/Mechanism Distributions 1991 s (fMD-91) provide failure rate data for a wide variety of component (part) types, including mechanical, electromechanical, and discrete electronic parts and assemblies. They provide summary failure rates for numerous part categories by quality level and environment. [Pg.9]

Another important application area for PSAs in the electronic industry focuses on the manufacturing, transport and assembly of electronic components into larger devices, such as computer disk drives. Due to the sensitivity of these components, contamination with adhesive residue, its outgassing products, or residue transferred from any liners used, needs to be avoided. Cleanliness of the whole tape construction becomes very critical, because residuals like metal ions, surfactants, halogens, silicones, and the like can cause product failures of the electronic component or product. Due to their inherent tackiness, acrylic PSAs are very attractive for this type of application. Other PSAs can be used as well, but particular attention has to be given to the choice of tackifier or other additives needed in the PSA formulation. The choice of release liner also becomes very critical because of the concern about silicone transfer to the adhesive, which may eventually contaminate the electronic part. [Pg.520]

Covers 250 non-electronic part types such as 87. actuators, complings, filters for 12 classes of environment (air, ground, sea) used in military systems and equipment... [Pg.61]

The H—O—H angle in water (105°) and the H—N—H angles in amnonia (107°) are slightly smaller than the tetrahedral angle. These bond-angle contractions are easily accommodated by VSEPR by reasoning that electron pairs in bonds take up less space than an unshared pair. The electron part in a covalent bond feels the attractive force of... [Pg.29]

In the case of the hydrogen molecule-ion H2" ", we defined certain integrals Saa, Taa, Tab, Labra- The electronic part of the energy appropriate to the Heitler-London (singlet) ground-state wavefunction, after doing the integrations... [Pg.92]

Aj[ the beginning of this chapter, I introduced the notion that the 16 electrons iU ethene could be divided conceptually into two sets, the 14 a and the 2 n electrons. Let me refer to the space and spin variables as xi, Xj, > xi6, and for the minute I will formally label electrons 1 and 2 as the 7r-electrons, with 3 through 16 the cr-electrons. Methods such as Huckel rr-electron theory aim to treat the TT-electrons in an effective field due to the nuclei and the remaining a electrons. To see how this might be done, let s look at the electronic Hamiltonian end see if it can be sensibly partitioned into a rr-electron part (electrons 1 and 2) and a cr part (electrons 3 through 16). We have... [Pg.133]

There is actually a further problem to do with the Pauli principle. Suppose that we had been able to calculate a wavefunction for the a-electron and the ar-electron parts, written... [Pg.133]

The Bom-Oppenheimer approximation is usually very good. For the hydrogen molecule the error is of the order of 10 ", and for systems with heavier nuclei, the approximation becomes better. As we shall see later, it is only possible in a few cases to solve the electronic part of the Schrodinger equation to an accuracy of 10 ", i.e. neglect of the nuclear-electron coupling is usually only a minor approximation compared with other errors. [Pg.3]

The equivalent of the spin-other-orbit operator in eq. (8.30) splits into two contributions, one involving the interaction of the electron spin with the magnetic field generated by the movement of the nuclei, and one describing the interaction of the nuclear spin with the magnetic field generated by the movement of the electrons. Only the latter survives in the Born-Oppenheimer approximation, and is normally called the Paramagnetic Spin-Orbit (PSO) operator. The operator is the one-electron part of... [Pg.212]

The derivative of the core operator h is a one-electron operator similar to the nucleus-electron attraction required for the energy itself (eq. (3.55)). The two-electron part yields zero, and the V n term is independent of the electronic wave function. The remaining terms in eqs. (10.89), (10.90) and (10.95) all involve derivatives of the basis functions. When these are Gaussian functions (as is usually the case) the derivative can be written in terms of two other Gaussian functions, having one lower and one higher angular momentum. [Pg.256]

In the Hamiltonian Eq. (3.39) the first term is the harmonic lattice energy given by Eq. (3.12). It depends only on A iU, i.e., the part of the order parameter that describes the lattice distortions. On the other hand, the electron Hamiltonian Hcl depends on A(.v), which includes the changes of the hopping amplitudes due to both the lattice distortion and the disorder. The free electron part of Hel is given by Eq. (3.10), to which we also add a term Hc 1-1-1 that describes the Coulomb interne-... [Pg.367]

Unfortunately the actual Hamiltonian (Eq. II.3) also contains a two-electron part, which prevents the separation of the variables mentioned above. Since the two-electron operator may be written in the form... [Pg.224]

A.E. Molzon, Encapsulation of Electronic Parts in Plastics — A Review , PLASTEC Rept 29 (1967) 22) J.B. Titus, Effect of Low... [Pg.788]

The first term is the electronic part of the Hamiltonian and this can be expanded as shown in equation (16). [Pg.69]

AgsSBr, /3-AgsSI, and a-AgsSI are cationic conductors due to the structural disorder of the cation sublattices. AgsSI (see Fig. 5) has been discussed for use in solid-electrolyte cells (209,371, 374,414-416) because of its high silver ionic conductivity at rather low temperatures (see Section II,D,1). The practical use seems to be limited, however, by an electronic part of the conductivity that is not negligible (370), and by the instability of the material with respect to loss of iodine (415). [Pg.342]

Local suppliers of hardware and electronic parts often offer many items useful in the laboratory at very competitive prices. [Pg.101]

The perturbation theory is the convenient starting point for the determination of the polarizability from the Schrodinger equation, restricted to its electronic part and the electric dipole interaction regime. The Stark Hamiltonian —p. describes the dipolar interaction between the electric field and the molecule represented by its... [Pg.262]


See other pages where Electronic parts is mentioned: [Pg.585]    [Pg.89]    [Pg.2317]    [Pg.168]    [Pg.356]    [Pg.521]    [Pg.140]    [Pg.277]    [Pg.211]    [Pg.495]    [Pg.363]    [Pg.268]    [Pg.270]    [Pg.469]    [Pg.299]    [Pg.171]    [Pg.212]    [Pg.229]    [Pg.162]    [Pg.355]    [Pg.13]    [Pg.248]    [Pg.244]    [Pg.22]    [Pg.27]    [Pg.13]    [Pg.270]    [Pg.264]    [Pg.137]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



© 2024 chempedia.info