Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl chloride epoxides

Both monomeric and polymeric plasticizers are suitable for plasticization. Practically all monomeric plasticizers for PVC can be used. Suitable polymeric plasticizers include polyadipates, chlorinated paraffins, carbamide resins, and epoxides. Vinyl chloride copolymers are compatible with most conventional pigments and extenders. Despite their high intrinsic stability, paints based on vinyl chloride copolymers have to be stabilized against dehydrochlorination in the presence of heat and/or UV radiation for some applications. Epoxy compounds are often sufficient for thermal stabilization. [Pg.26]

Ethylene, chlorinated Natural rubber, epoxidized Vinyl chloride Single Tg II was 50 mol% epoxidized Kaklas et al. (1991)... [Pg.2071]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Titanium—Vanadium Mixed Metal Alkoxides. Titanium—vanadium mixed metal alkoxides, VO(OTi(OR)2)2, are prepared by reaction of titanates, eg, TYZOR TBT, with vanadium acetate ia a high boiling hydrocarbon solvent. The by-product butyl acetate is distilled off to yield a product useful as a catalyst for polymeri2iag olefins, dienes, styrenics, vinyl chloride, acrylate esters, and epoxides (159,160). [Pg.151]

The degradation of vinyl chloride and ethene has been examined in Mycobacterium sp. strain JS 60 (Coleman and Spain 2003) and in Nocardioides sp. strain JS614 (Mattes et al. 2005). For both substrates, the initially formed epoxides underwent reaction with reduced coenzyme M and, after dehydrogenation and formation of the coenzyme A esters, reductive loss of coenzyme M acetate resulted in the production of 5-acetyl-coenzyme A. The reductive fission is formally analogous to that in the glutathione-mediated reaction. [Pg.307]

The aerobic degradation of chloroethene (vinyl chloride) by Mycobacterium aurum strain LI proceeded by initial formation of an epoxide mediated by an alkene monooxygenase (Hartmans and de Bout 1992). This reaction has also been demonstrated to occur with Methylosinus trichosporium, even though subsequent reactions were purely chemical (Castro et al. 1992b). [Pg.365]

Double bonds having oxygen and halogen substituents are susceptible to epoxi-dation, and the reactive epoxides that are generated serve as intermediates in some useful synthetic transformations in which the substituent migrates to the other carbon of the original double bond. Vinyl chlorides furnish haloepoxides that can rearrange to a-haloketones. [Pg.1112]

A Japanese patent72) claims the synthesis of thermally stable copolymers by free-radical terpolymerization of dialkylstannyl dimethacrylates, glycidyl methacrylate and vinyl monomers (vinyl chloride, styrene, vinyl acetate, etc.). The products contain 0.5 to 30% tin and 0.05 to 7 % epoxide oxygen. [Pg.120]

Endrin is a stereoisomer of dieldrin produced by the reaction of vinyl chloride and hexachloro-cyclopentadiene to yield a product which is then dehydrochlorinated and condensed with cyclopentadiene to produce isodrin. This intermediate is then epoxidized with peracetic or perbenzoic acid to yield endrin. An alternative production method involves condensation of hexachlorocyclopentadiene with acetylene to yield the intermediate for condensation with cyclopentadiene (EPA 1985e IARC 1974). [Pg.104]

Trichlorobenzene. Trichloroethylene Hydrogen azide, see Alachlor. Aldicarb. Atrazine Hydrogen bromide, see Ethylene dibromide Hydrogen chloride, see Atrazine. Captan. Carbon tetrachloride. Chloroform. Chlorpropham. Chlorpyrifos. 1.2-Dichloroethane. Diuron. Endrin. Formaldehyde. Heptachlor. Heptachlor epoxide. Hexachlorocyclopentadiene. Linuron. Methyl chloride. Methylene chloride. Methyl formate. Monuron. Propanil. Tetrachloroethylene. Trichloroethylene. Vinyl chloride Hydrogen cyanide, see Acetontrile. Alachlor. Aldicarb. [Pg.1531]

Unsaturated aliphatic compounds and heterocyclic compounds may also be metabolized via epoxide intermediates as shown in Figure 4.6 and chapter 5, Figure 14. Note that when the epoxide ring opens, the chlorine atom shifts to the adjacent carbon atom (Fig. 4.6). In the case of the furan ipomeanol and vinyl chloride, the epoxide intermediate is thought to be responsible for the toxicity (see below and chap. 7). Other examples of unsaturated aliphatic compounds, which may be toxic and are metabolized via epoxides, are diethylstilboestrol, allylisopropyl acetamide, which destroys cytochrome P-450, sedormid, and secobarbital. [Pg.85]

Aliphatic hydroxylation. As well as unsaturated aliphatic compounds such as vinyl chloride mentioned above, which are metabolized by epoxidation, saturated aliphatic compounds also undergo oxidation. The initial products will be primary and secondary alcohols. For example, the solvent n-hexane is known to be metabolized to the secondary alcohol hexan-2-ol and then further to hexane-2,5-dione (Fig. 4.9) in occupationally exposed humans. The latter metabolite is believed to be responsible for the neuropathy caused by the solvent. Other toxicologically important examples are the nephrotoxic petrol constituents, 2,2,4- and 2,3,4-trimethylpentane, which are hydroxylated to... [Pg.86]

For example, the reactive metabolites of the drug allobarbital (epoxide), the industrial chemical vinyl chloride (epoxide), and the solvent carbon tetrachloride (CC13 radical) all damage cytochrome P-450 by this type of mechanism (see chap. 7). [Pg.123]

There is also an enzyme for removal of methyl and ethyl groups from bases by oxidizing them to their respective aldehydes-the Aik B repair enzyme. Lipid epoxides, which may be produced in inflammatory tissue and can yield alkylated bases, will also be repaired by this enzyme (Fig. 6.47). Metabolic activation of vinyl chloride will also yield the same adduct (see chap. 7). [Pg.270]

Figure 7.6 The metabolism of vinyl chloride. Abbreviation EH, epoxide hydrolase. Figure 7.6 The metabolism of vinyl chloride. Abbreviation EH, epoxide hydrolase.
Vinyl chloride is a chemical used in the manufacture of plastics, which is carcinogenic and causes various toxic effects, including liver injury and damage to the bones and skin. Liver hemangiosarcomas are produced in animals and humans. Vinyl chloride undergoes metabolic activation by cytochrome P-450 to an epoxide, which may interact with DNA and form adducts (ethenodeoxyadenosine and ethenodeoxycytidine), which leads to mutations. These can be detected in white cells, and a mutant p21 ras protein can be detected in the serum of exposed workers. Also, reaction with GSH occurs. [Pg.393]

Vinyl chloride causes liver cancer (hemangiosarcoma), narcosis, and Raynaud s phenomenon that comprises scleroderma, acro-osteolysis, and liver damage. The appearance of liver tumors is dose dependent but reaches a maximum at about 22% incidence. This seems to be due to the fact that the metabolism that is necessary for the carcinogenicity, is saturated, and/or inhibited by vinyl chloride. The toxic metabolites produced are the epoxide and chloroacetaldehyde. [Pg.432]

This oxidation is unique, since only silver is capable of epoxidizing ethylene, and silver is active only in the oxidation of ethylene. A low-surface-area a-alumina is usually applied to support about 10-15% silver. Organic halides (1,2-dichloro-ethane, ethyl and vinyl chloride) are added as moderators, and additives (Cs, Ba) are also used to increase selectivity. At present selectivity in industrial oxidations is about 80%. [Pg.506]

Many other types of polymer have been prepared which exhibit semiconductivity. All obey the equation a = a0exp — E/kT. These include xanthene polymers (109, 110), polymerized phthalocyanines (111, 112), epoxides and polydiketones (86, 113), polypentadienes (114), polydicyanoacetylenes (115), polyvinylferrocene and substituted ferrocene (116, 117, 118, 119), polymeric complexes of tetracyanoethylene and metals (120), poly(vinyl chloride) and poly(vinylidene chloride) (121), polyvinylene and polyphenylene (122) and poly(Schiff s bases) (123, 124). [Pg.343]

As a second example, there is a wide variety of breakdown products and oligomeric products that may be formed from the reactive monomers that are the building blocks of plastics. For plastics, the general assumption has been that any side-reaction products and breakdown products are likely to be significantly less toxic than the monomers, and so restricting the migration of the monomer was accepted as an indirect way to limit any hazard from the oligomers also. Whilst this approach is probably acceptable for addition polymers, such as those made from the unsaturated monomers vinyl chloride, butadiene and acrylonitrile where the unsaturated monomer is far more noxious than their products, the validity of this means of indirect control is questionable for condensation polymers such as polyesters and for polyethers formed from epoxide monomers. [Pg.201]

The epoxide has a strong tendency to covalently bond to protein, DNA, and RNA, and it rearranges to chloroacetaldehyde, a known mutagen. Therefore, vinyl chloride produces two potentially carcinogenic metabolites. Both of these products can undergo conjugation with glutathione to yield products that are eliminated from the body. [Pg.349]

If the dienophile (norbornadiene) is chlorinated instead, either via the reaction of hex with vinyl chloride followed by dehydrochlorination, or directly with acetylene, to give 1,2,3i4, 7 7-hexachlorobicyclo( 2.2.1 J] hepta-2,5-diene (hexachloronorborn-adiene B, Figure 3)i this compound reacts with cyclopentadiene to give isodrin (C precursor of the epoxide, endrin) having the opposite (endo-,endo-) stereochemistry to aldrin (and dieldrin), respectively (12). Isodrin has not found commercial use but endrin has been widely used in tropical and sub-tropical agriculture - to control cotton pests, for example. [Pg.12]


See other pages where Vinyl chloride epoxides is mentioned: [Pg.68]    [Pg.263]    [Pg.136]    [Pg.268]    [Pg.104]    [Pg.681]    [Pg.63]    [Pg.364]    [Pg.239]    [Pg.241]    [Pg.1530]    [Pg.618]    [Pg.981]    [Pg.270]    [Pg.301]    [Pg.302]    [Pg.927]    [Pg.302]    [Pg.136]    [Pg.314]    [Pg.155]    [Pg.209]    [Pg.209]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Epoxidation vinyl

Epoxides, vinyl lithium chloride

Vinyl chloride

Vinyl chloride epoxidation

Vinyl chloride epoxidation

Vinyl epoxide

Vinylic chlorides

Vinylic epoxides

© 2024 chempedia.info