Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxide From allylic alcohol

The Sharpless-Katsuki asymmetric epoxidation (AE) procedure for the enantiose-lective formation of epoxides from allylic alcohols is a milestone in asymmetric catalysis [9]. This classical asymmetric transformation uses TBHP as the terminal oxidant, and the reaction has been widely used in various synthetic applications. There are several excellent reviews covering the scope and utility of the AE reaction... [Pg.188]

The asymmetric oxidation of organic compounds, especially the epoxidation, dihydroxylation, aminohydroxylation, aziridination, and related reactions have been extensively studied and found widespread applications in the asymmetric synthesis of many important compounds. Like many other asymmetric reactions discussed in other chapters of this book, oxidation systems have been developed and extended steadily over the years in order to attain high stereoselectivity. This chapter on oxidation is organized into several key topics. The first section covers the formation of epoxides from allylic alcohols or their derivatives and the corresponding ring-opening reactions of the thus formed 2,3-epoxy alcohols. The second part deals with dihydroxylation reactions, which can provide diols from olefins. The third section delineates the recently discovered aminohydroxylation of olefins. The fourth topic involves the oxidation of unfunc-tionalized olefins. The chapter ends with a discussion of the oxidation of eno-lates and asymmetric aziridination reactions. [Pg.195]

Cyclization of allylic alcohols to form epoxides has been particularly problematical, and the reactions have been more of mechanistic than of synthetic interest. For reactions conducted under basic conditions, it is possible that epoxide formation involves initial halogen addition followed by nucleophilic displacement to form the epoxide. Early examples of direct formation of epoxides from allylic alcohols with sodium hypobromite," bromine and 1.5 M NaOH,12 and r-butyl hypochlorite13 have been reviewed previously.fr Recently it has been shown that allylic alcohols can be cyclized effectively with bis(jym-collidine)iodine(I) perchlorate (equation 3).14 An unusual example of epoxide formation competing with other cyclization types is shown in equation (4).15 In this case, an allylic benzyl ether competes effectively with a -/-hydroxyl group as the nucleophile. [Pg.367]

With chiral ligands, the transition-metal catalyst-hydroperoxide complex yields optically active oxiranes. " One of the most significant advances in the formation of chiral epoxides from allyl alcohols has recently been reported by the Sharpless group. Using (-l-)-tartaric acid, ferf-butylhydroperoxide, and titanium isopropoxide, they were able to obtain chiral epoxides in very high enantiomeric excess. The enantiomeric epoxide can be obtained by employing (—)-tartaric acid (Eq. 33a). [Pg.33]

In general, the reaction accomplishes the efficient asymmetric synthesis of hydroxymethyl epoxides from allylic alcohols (Scheme 8.4). Operationally, the catalyst is prepared by dissolving titanium isopropoxide, diethyl or diisopropyl tartrate (DET or DIPT, respectively), and molecular sieves in CH2CI2 at -20 °C, followed by addition of the allylic alcohol or t-BuOOH. After a brief weiiting period (presumably to allow the ligand equilibration to occur on titanium), the final component of the reaction is added. [Pg.328]

Tit enantiomeric Epoxide from allylic Alcohol Ref Review A. Pfennjnger, Synthesis 89 (1986)... [Pg.364]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

Previous syntheses of terminal alkynes from aldehydes employed Wittig methodology with phosphonium ylides and phosphonates. 6 7 The DuPont procedure circumvents the use of phosphorus compounds by using lithiated dichloromethane as the source of the terminal carbon. The intermediate lithioalkyne 4 can be quenched with water to provide the terminal alkyne or with various electrophiles, as in the present case, to yield propargylic alcohols, alkynylsilanes, or internal alkynes. Enantioenriched terminal alkynylcarbinols can also be prepared from allylic alcohols by Sharpless epoxidation and subsequent basic elimination of the derived chloro- or bromomethyl epoxide (eq 5). A related method entails Sharpless asymmetric dihydroxylation of an allylic chloride and base treatment of the acetonide derivative.8 In these approaches the product and starting material contain the same number of carbons. [Pg.87]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

A combination of DAT and a metal alkoxide other than titanium alkoxide serves as a poor catalyst for the epoxidation of allylic alcohols. However, the combination of DAT and silica-supported tantalum alkoxides (2a) and (2b) prepared from Ta(=CHCMe3)(CH2Cme3)3 and silica(5oo) shows high enantioselectivity in the epoxidation of E-allylic alcohols, though chemical yields are not very great (Scheme 4).3... [Pg.210]

The development of transition metal mediated asymmetric epoxidation started from the dioxomolybdcnum-/V-cthylcphcdrinc complex,4 progressed to a peroxomolybdenum complex,5 then vanadium complexes substituted with various hydroxamic acid ligands,6 and the most successful procedure may now prove to be the tetroisopropoxyltitanium-tartrate-mediated asymmetric epoxidation of allylic alcohols. [Pg.196]

Fig. 46. Influence of solvent dielectric constant (logarithm (In) values) on (a) phenol hydroxyla-tion [data taken from Thangaraj et al. (266)] and (b) epoxidation of allyl alcohol catalyzed by TS-1 [data from Wu and Tatsumi (229)]. Fig. 46. Influence of solvent dielectric constant (logarithm (In) values) on (a) phenol hydroxyla-tion [data taken from Thangaraj et al. (266)] and (b) epoxidation of allyl alcohol catalyzed by TS-1 [data from Wu and Tatsumi (229)].
Although it was also Henbest who reported as early as 1965 the first asymmetric epoxidation by using a chiral peracid, without doubt, one of the methods of enantioselective synthesis most frequently used in the past few years has been the "asymmetric epoxidation" reported in 1980 by K.B. Sharpless [3] which meets almost all the requirements for being an "ideal" reaction. That is to say, complete stereofacial selectivities are achieved under catalytic conditions and working at the multigram scale. The method, which is summarised in Fig. 10.1, involves the titanium (IV)-catalysed epoxidation of allylic alcohols in the presence of tartaric esters as chiral ligands. The reagents for this asyimnetric epoxidation of primary allylic alcohols are L-(+)- or D-(-)-diethyl (DET) or diisopropyl (DIPT) tartrate,27 titanium tetraisopropoxide and water free solutions of fert-butyl hydroperoxide. The natural and unnatural diethyl tartrates, as well as titanium tetraisopropoxide are commercially available, and the required water-free solution of tert-bnty hydroperoxide is easily prepared from the commercially available isooctane solutions. [Pg.278]

In connection with the synthetic work directed towards the total synthesis of polyene macrolide antibiotics -such as amphotericin B (i)- Sharpless and Masamune [1] on one hand, and Nicolaou and Uenishi on the other [2], have developed alternative methods for the enantioselective synthesis of 1,3-diols and, in general, 1, 3, 5...(2n + 1) polyols. One of these methods is based on the Sharpless asymmetric epoxidation of allylic alcohols [3] and regioselective reductive ring opening of epoxides by metal hydrides, such as Red-Al and DIBAL. The second method uses available monosaccharides from the "chiral pool" [4], such as D-glucose. [Pg.386]

Since the starting tellurides are easily prepared (see Section 3.1.3.2) from the corresponding alkyl bromides and tellurolate ions, and -hydroxyalkyl tellurides by the opening of epoxides with the same reagents, the combined procedures furnish a method for the dehydrobromination of alkyl bromides and for the conversion of epoxides into allylic alcohols. Moreover, combining the telluroxide elimination with the methoxytelluration of olefins (see Sections 3.9.3.2 and 4.4.8.3), allylic and vinylic ethers are easily prepared. [Pg.214]

Asymmetric epoxidation of olefins is an effective approach for the synthesis of enan-tiomerically enriched epoxides. A variety of efficient methods have been developed [1, 2], including Sharpless epoxidation of allylic alcohols [3, 4], metal-catalyzed epoxidation of unfunctionalized olefins [5-10], and nucleophilic epoxidation of electron-deficient olefins [11-14], Dioxiranes and oxazirdinium salts have been proven to be effective oxidation reagents [15-21], Chiral dioxiranes [22-28] and oxaziridinium salts [19] generated in situ with Oxone from ketones and iminium salts, respectively, have been extensively investigated in numerous laboratories and have been shown to be useful toward the asymmetric epoxidation of alkenes. In these epoxidation reactions, only a catalytic amount of ketone or iminium salt is required since they are regenerated upon epoxidation of alkenes (Scheme 1). [Pg.202]

Asymmetric synthesis of stavudine and cordycepin, anti-HIV agents, and several 3 -amino-3 -deoxy-P-nudeosides was achieved utilizing this cycloisomerization of 3-butynols to dihydrofuran derivatives [16]. For example, Mo(CO)6-TMNO-promoted cyclization of the optically active alkynyl alcohol 42, prepared utilizing Sharpless asymmetric epoxidation, afforded dihydrofuran 43 in good yield. Iodine-mediated introduction of a thymine moiety followed by dehydroiodination and hydrolysis of the pivaloate gave stavudine in only six steps starting from allyl alcohol (Scheme 5.13). [Pg.167]

FIGURE 29. Reactant cluster, transition state, TS, and the IRO path study (right drawing) of the epoxidation of allyl alcohol with peroxyformic acid showing the movement of atoms from the transition state (dark, PI) toward the products (light, P3) with an intermediate strucmre, P2. The calculation was done at the MP2/6-31G(d) level. The reaction coordinate is in units of amu bohr, the relative energies are in kcal mol and the distances are in A. Geometric parameters in parentheses are at the MP2/6-31G(d,p) (see text) level of theory... [Pg.66]

A problem especially with oxidation catalysts is that the metals in their highest oxidation state tend to be less strongly associated with a support, so that the reaction conditions can lead to leaching of the metal complex from the support. To overcome this problem, microencapsulation, as an immobilization technique for metal complexes, has been introduced by Kobayashi and coworkers. In the microencapsulation method, the metal complex is not attached by covalent bonding but is physically enveloped by a thin film of a polymer, usually polystyrene. With this technique leaching of the metal can be prevented. In 2002, Lattanzi and Leadbeater reported on the use of microencapsulated VO(acac)2 for the epoxidation of allylic alcohols. In the presence of TBHP as oxidant, it was possible to oxidize a variety of substrates with medium to good yields (55-96%) and diastereomeric ratios (60/40 to >98/2) (equation 42). The catalyst is easily prepared and can be reused several times without significant loss in activity. [Pg.413]

Isomerization of primary allylic alcohols proceeds in dichloromethane at 25 °C in the presence of a catalyst prepared in situ from VO(acac)2 or Mo02(acac)2 and BTSP to give tertiary isomers in good yields. This is in sharp contrast to the well-known Sharpless epoxidation of allylic alcohols. The catalysts are also effective for rearrangements of secondary-tertiary allylic alcohols. The isomerization of an allenyl allylic... [Pg.789]

In 1980, Katsuki and Sharpless described the first really efficient asymmetric epoxidation of allylic alcohols with very high enantioselectivities (ee 90-95%), employing a combination of Ti(OPr-/)4-diethyl tartrate (DET) as chiral catalyst and TBHP as oxidant Stoichiometric conditions were originally described for this system, however the addition of molecular sieves (which trap water traces) to the reaction allows the epoxidation to proceed under catalytic conditions. The stereochemical course of the reaction may be predicted by the empirical rule shown in equations 40 and 41. With (—)-DET, the oxidant approaches the allylic alcohol from the top side of the plane, whereas the bottom side is open for the (-l-)-DET based reagent, giving rise to the opposite optically active epoxide. Various aspects of this reaction including the mechanism, theoretical investigations and synthetic applications of the epoxy alcohol products have been reviewed and details may be found in the specific literature . [Pg.1092]

Prior to the usage of the Ti-based catalytic system , the Sharpless group had reported their first asymmetric epoxidation of allylic alcohols using a combination of VO(acac)2/ TBHP and the chiral hydroxamic acid 67 (ee < 50%) or derivatives (ee 80%) ". In 1999, Yamamoto and coworkers described an improvement of this oxidation protocol, ee values up to 94%, by using hydroxamic acids derived from binaphthol, 68 being the... [Pg.1092]

Chiral Mo02(acac)(L ) complexes, where L is a chiral bidentate 0,0-ligand derived from (L)-frans-4-hydroxyproline bearing a Si(OEt)3 moiety, have been successfully heterogenised on zeolite-Y and tested for the epoxidation of allylic alcohols (geraniol and nerol) with TBHP (Scheme 4) [18]. [Pg.143]

With a twist on the Sharpless asymmetric epoxidation protocol, Yamamoto and co-workers <99JOC338> have developed a chiral hydroxamic acid (17) derived from binaphthol, which serves as a coordinative chiral auxiliary when combined with VO(acac)j or VO(i-PrO)j in the epoxidation of allylic alcohols. In this protocol, triphenylmethyl hydroperoxide (TiOOH) provides markedly increased enantiomeric excess, compared to the more traditional t-butyl hydroperoxide. Thus, the epoxidation of E-2,3-diphenyl-2-propenol (18) with 7.5 mol% VO(i-PiO)3 and 15 mol% of 17 in toluene (-20 °C 24 h) provided the 2S,3S epoxide 19 in 83% ee. [Pg.59]

The absolute configuration of ( )-3-tributylstannyl-l-heptanol (14) (see p 445) was determined in a correlative way using epoxy alcohol 12 as synthetic starting point. Configurational assignment of 12, obtained from allyl alcohol 11, was again based on the Sharpless epoxidation... [Pg.453]

The chiral ligand (44) was prepared starting from the cyclic a-amino acid (S)-proline80). Recently, similar chiral catalysts and related molybdenum complexes involving optically active N-alkyl-P-aminoalcohols as stable chiral ligands and acetylacetone as a replaceable bidentate ligand, were designed for the epoxidation of allylic alcohols with alkyl hydroperoxides which could be catalyzed by such metal complexes 8,). [Pg.181]

Chiral alkenyl and cycloalkenyl oxiranes are valuable intermediates in organic synthesis [38]. Their asymmetric synthesis has been accomplished by several methods, including the epoxidation of allyl alcohols in combination with an oxidation and olefination [39a], the epoxidation of dienes [39b,c], the chloroallylation of aldehydes in combination with a 1,2-elimination [39f-h], and the reaction of S-ylides with aldehydes [39i]. Although these methods are efficient for the synthesis of alkenyl oxiranes, they are not well suited for cycloalkenyl oxiranes of the 56 type (Scheme 1.3.21). Therefore we had developed an interest in the asymmetric synthesis of the cycloalkenyl oxiranes 56 from the sulfonimidoyl-substituted homoallyl alcohols 7. It was speculated that the allylic sulfoximine group of 7 could be stereoselectively replaced by a Cl atom with formation of corresponding chlorohydrins 55 which upon base treatment should give the cycloalkenyl oxiranes 56. The feasibility of a Cl substitution of the sulfoximine group had been shown previously in the case of S-alkyl sulfoximines [40]. [Pg.100]


See other pages where Epoxide From allylic alcohol is mentioned: [Pg.39]    [Pg.351]    [Pg.23]    [Pg.39]    [Pg.351]    [Pg.23]    [Pg.116]    [Pg.225]    [Pg.189]    [Pg.272]    [Pg.1202]    [Pg.209]    [Pg.19]    [Pg.305]    [Pg.281]    [Pg.233]    [Pg.63]    [Pg.211]    [Pg.878]    [Pg.330]    [Pg.385]    [Pg.403]    [Pg.1089]    [Pg.125]   
See also in sourсe #XX -- [ Pg.2 , Pg.32 , Pg.46 , Pg.58 , Pg.61 , Pg.67 , Pg.77 , Pg.94 , Pg.112 , Pg.115 , Pg.141 , Pg.156 , Pg.162 , Pg.168 , Pg.172 , Pg.176 , Pg.193 , Pg.197 ]




SEARCH



Alcohols epoxidation

Alcohols from epoxides

Alcohols, allylic from epoxides

Alcohols, allylic from epoxides

Allyl alcohols chiral epoxides from

Allyl alcohols from Sharpless epoxidation

Allylic alcohols, synthesis from epoxides

Allylic epoxidations

Allylic epoxide

Allylic epoxides

Epoxidation allyl alcohol

Epoxidation allylic alcohols

Epoxidations allylic alcohols

Epoxide alcohol

Epoxides allylation

From allylic alcohols

From epoxides

© 2024 chempedia.info