Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic alcohols, synthesis from epoxides

AUyl transfer reactions, 73, 1 Allylic alcohols, synthesis from epoxides, 29, 3 by Wittig rearrangement, 46, 2 Allylic and benzylic carbanions, heteroatom-substituted, 27, 1 Allylic hydroperoxides, in... [Pg.584]

Compatibility of asymmetric epoxidation with acetals, ketals, ethers, and esters has led to extensive use of allylic alcohols containing these groups in the synthesis of polyoxygenated natural products. One such synthetic approach is illustrated by the asymmetric epoxidation of 15, an allylic alcohol derived from (S)-glyceraldehyde acetonide [59,62]. In the epoxy alcohol (16) obtained from 15, each carbon of the five-carbon chain is oxygenated, and all stereochemistry has been controlled. The structural relationship of 16 to the pentoses is evident, and methods leading to these carbohydrates have been described [59,62a]. [Pg.245]

Certain chiral epoxides can be prepared from fl-hydroxyselenides (e.g., 43), typically intermediates for allylic alcohol synthesis. The novel reactivity of these substrates seems to be restricted to those cyclic compounds in which the hydroxy and the selenoxide groups can achieve an antiperiplanar disposition [95TL5079],... [Pg.52]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

N,O-acetal intermediate 172, y,<5-unsaturated amide 171. It is important to note that there is a correspondence between the stereochemistry at C-41 of the allylic alcohol substrate 173 and at C-37 of the amide product 171. Provided that the configuration of the hydroxyl-bearing carbon in 173 can be established as shown, then the subsequent suprafacial [3,3] sigmatropic rearrangement would ensure the stereospecific introduction of the C-37 side chain during the course of the Eschenmoser-Claisen rearrangement, stereochemistry is transferred from C-41 to C-37. Ketone 174, a potential intermediate for a synthesis of 173, could conceivably be fashioned in short order from epoxide 175. [Pg.607]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

Synthesis of Allylic Alcohol Xa. A 3.84 g sample of olefin VII was treated with m-chloroperoxybenzoic acid (MCPBA) in dichloromethane for 1.5 hours at 0°C and 2.5 hours at 20°C. The NMR spectrum of the crude product indicated a mixture of approximately 75% epoxide VIII and 25% IX (structural assignments based upon assumed epoxidation preferentially from the less hindered side). Purification by column chromatography furnished 0.61 g of IX and 2.58 g of VIII. The separation was performed for characterization purposes the crude epoxidation mixture was suitable for subsequent transformations. [Pg.431]

The asymmetric oxidation of organic compounds, especially the epoxidation, dihydroxylation, aminohydroxylation, aziridination, and related reactions have been extensively studied and found widespread applications in the asymmetric synthesis of many important compounds. Like many other asymmetric reactions discussed in other chapters of this book, oxidation systems have been developed and extended steadily over the years in order to attain high stereoselectivity. This chapter on oxidation is organized into several key topics. The first section covers the formation of epoxides from allylic alcohols or their derivatives and the corresponding ring-opening reactions of the thus formed 2,3-epoxy alcohols. The second part deals with dihydroxylation reactions, which can provide diols from olefins. The third section delineates the recently discovered aminohydroxylation of olefins. The fourth topic involves the oxidation of unfunc-tionalized olefins. The chapter ends with a discussion of the oxidation of eno-lates and asymmetric aziridination reactions. [Pg.195]

Allylic alcohols are interesting substrates for epoxidation because they produce epoxides with a hydroxyl group as additional functional group that is able to play an important role in the subsequent synthesis of complex molecules [105]. This synthesis aspect certainly benefits from the hydroxy-group directed selectivity of oxygen delivery. [Pg.305]

Although it was also Henbest who reported as early as 1965 the first asymmetric epoxidation by using a chiral peracid, without doubt, one of the methods of enantioselective synthesis most frequently used in the past few years has been the "asymmetric epoxidation" reported in 1980 by K.B. Sharpless [3] which meets almost all the requirements for being an "ideal" reaction. That is to say, complete stereofacial selectivities are achieved under catalytic conditions and working at the multigram scale. The method, which is summarised in Fig. 10.1, involves the titanium (IV)-catalysed epoxidation of allylic alcohols in the presence of tartaric esters as chiral ligands. The reagents for this asyimnetric epoxidation of primary allylic alcohols are L-(+)- or D-(-)-diethyl (DET) or diisopropyl (DIPT) tartrate,27 titanium tetraisopropoxide and water free solutions of fert-butyl hydroperoxide. The natural and unnatural diethyl tartrates, as well as titanium tetraisopropoxide are commercially available, and the required water-free solution of tert-bnty hydroperoxide is easily prepared from the commercially available isooctane solutions. [Pg.278]

In connection with the synthetic work directed towards the total synthesis of polyene macrolide antibiotics -such as amphotericin B (i)- Sharpless and Masamune [1] on one hand, and Nicolaou and Uenishi on the other [2], have developed alternative methods for the enantioselective synthesis of 1,3-diols and, in general, 1, 3, 5...(2n + 1) polyols. One of these methods is based on the Sharpless asymmetric epoxidation of allylic alcohols [3] and regioselective reductive ring opening of epoxides by metal hydrides, such as Red-Al and DIBAL. The second method uses available monosaccharides from the "chiral pool" [4], such as D-glucose. [Pg.386]

Asymmetric epoxidation of olefins is an effective approach for the synthesis of enan-tiomerically enriched epoxides. A variety of efficient methods have been developed [1, 2], including Sharpless epoxidation of allylic alcohols [3, 4], metal-catalyzed epoxidation of unfunctionalized olefins [5-10], and nucleophilic epoxidation of electron-deficient olefins [11-14], Dioxiranes and oxazirdinium salts have been proven to be effective oxidation reagents [15-21], Chiral dioxiranes [22-28] and oxaziridinium salts [19] generated in situ with Oxone from ketones and iminium salts, respectively, have been extensively investigated in numerous laboratories and have been shown to be useful toward the asymmetric epoxidation of alkenes. In these epoxidation reactions, only a catalytic amount of ketone or iminium salt is required since they are regenerated upon epoxidation of alkenes (Scheme 1). [Pg.202]


See other pages where Allylic alcohols, synthesis from epoxides is mentioned: [Pg.26]    [Pg.36]    [Pg.27]    [Pg.207]    [Pg.401]    [Pg.376]    [Pg.401]    [Pg.997]    [Pg.207]    [Pg.102]    [Pg.575]    [Pg.152]    [Pg.179]    [Pg.401]    [Pg.997]    [Pg.102]    [Pg.309]    [Pg.1073]    [Pg.309]    [Pg.310]    [Pg.429]    [Pg.436]    [Pg.702]    [Pg.54]    [Pg.1202]    [Pg.438]    [Pg.19]    [Pg.204]    [Pg.405]    [Pg.656]    [Pg.591]    [Pg.25]    [Pg.211]    [Pg.256]    [Pg.878]   
See also in sourсe #XX -- [ Pg.3 , Pg.29 ]




SEARCH



Alcohols epoxidation

Alcohols from epoxides

Alcohols synthesis

Alcohols synthesis from

Alcohols, allylic from epoxides

Allyl alcohols, synthesis

Allyl synthesis

Allylic alcohols, synthesis from

Allylic epoxidations

Allylic epoxide

Allylic epoxides

Allylic synthesis

Epoxidation allyl alcohol

Epoxidation allylic alcohols

Epoxidations allylic alcohols

Epoxide From allylic alcohol

Epoxide alcohol

Epoxide synthesis

Epoxides allylation

Epoxides synthesis

From allylic alcohols

From epoxides

© 2024 chempedia.info