Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl alcohols chiral epoxides from

The known allylic alcohol 9 derived from protected dimethyl tartrate is exposed to Sharpless asymmetric epoxidation conditions with (-)-diethyl D-tartrate. The reaction yields exclusively the anti epoxide 10 in 77 % yield. In contrast to the above mentioned epoxidation of the ribose derived allylic alcohol, in this case epoxidation of 9 with MCPBA at 0 °C resulted in a 65 35 mixture of syn/anti diastereomers. The Sharpless epoxidation of primary and secondary allylic alcohols discovered in 1980 is a powerful reagent-controlled reaction.12 The use of titanium(IV) tetraisopropoxide as catalyst, tert-butylhydro-peroxide as oxidant, and an enantiopure dialkyl tartrate as chiral auxiliary accomplishes the epoxidation of allylic alcohols with excellent stereoselectivity. If the reaction is kept absolutely dry, catalytic amounts of the dialkyl tartrate(titanium)(IV) complex are sufficient. [Pg.202]

Chiral epoxides are important intermediates in organic synthesis. A benchmark classic in the area of asymmetric catalytic oxidation is the Sharpless epoxidation of allylic alcohols in which a complex of titanium and tartrate salt is the active catalyst [273]. Its success is due to its ease of execution and the ready availability of reagents. A wide variety of primary allylic alcohols are epoxidized in >90% optical yield and 70-90% chemical yield using tert-butyl hydroperoxide as the oxygen donor and titanium-isopropoxide-diethyltartrate (DET) as the catalyst (Fig. 4.97). In order for this reaction to be catalytic, the exclusion of water is absolutely essential. This is achieved by adding 3 A or 4 A molecular sieves. The catalytic cycle is identical to that for titanium epoxidations discussed above (see Fig. 4.20) and the actual catalytic species is believed to be a 2 2 titanium(IV) tartrate dimer (see Fig. 4.98). The key step is the preferential transfer of oxygen from a coordinated alkylperoxo moiety to one enantioface of a coordinated allylic alcohol. For further information the reader is referred to the many reviews that have been written on this reaction [274, 275]. [Pg.196]

With chiral ligands, the transition-metal catalyst-hydroperoxide complex yields optically active oxiranes. " One of the most significant advances in the formation of chiral epoxides from allyl alcohols has recently been reported by the Sharpless group. Using (-l-)-tartaric acid, ferf-butylhydroperoxide, and titanium isopropoxide, they were able to obtain chiral epoxides in very high enantiomeric excess. The enantiomeric epoxide can be obtained by employing (—)-tartaric acid (Eq. 33a). [Pg.33]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

In 1980, Katsuki and Sharpless communicated that the epoxidation of a variety of allylic alcohols was achieved in exceptionally high enantioselectivity with a catalyst derived from titanium(IV) isopropoxide and chiral diethyl tartrate. This seminal contribution described an asymmetric catalytic system that not only provided the product epoxide in remarkable enantioselectivity, but showed the immediate generality of the reaction by examining 5 of the 8 possible substitution patterns of allylic alcohols all of which were epoxidized in >90% ee. Shortly thereafter. Sharpless and others began to illustrate the... [Pg.50]

Desymmetrization of meso-bis-allylic alcohols is an effective method for the preparation of chiral functionalized intermediates from meso-substrates. Schreiber et al has shown that divinyl carbonyl 58 is epoxidized in good enantioselectivity. However, because the product epoxy alcohols 59 and 60 also contain a reactive allylic alcohol that are diastereomeric in nature, a second epoxidation would occur at different rates and thus affect the observed ee for the first AE reaction and the overall de. Indeed, the major diastereomeric product epoxide 59 resulting from the first AE is less reactive in the second epoxidation. Thus, high de is easily obtainable since the second epoxidation removes the minor diastereomer. [Pg.60]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

The stereochemistry of the first step was ascertained by an X-ray analysis [8] of an isolated oxazaphospholidine 3 (R = Ph). The overall sequence from oxi-rane to aziridine takes place with an excellent retention of chiral integrity. As the stereochemistry of the oxirane esters is determined by the chiral inductor during the Sharpless epoxidation, both enantiomers of aziridine esters can be readily obtained by choosing the desired antipodal tartrate inductor during the epoxidation reaction. It is relevant to note that the required starting allylic alcohols are conveniently prepared by chain elongation of propargyl alcohol as a C3 synthon followed by an appropriate reduction of the triple bond, e. g., with lithium aluminum hydride [6b]. [Pg.95]

Although the Sharpless asymmetric epoxidation is an elegant method to introduce a specific defined chirality in epoxy alcohols and thus, in functionalized aziridines (see Sect. 2.1), it is restricted to the use of allylic alcohols as the starting materials. To overcome this limitation, cyclic sulfites and sulfates derived from enantiopure vfc-diols can be used as synthetic equivalents of epoxides (Scheme 5) [12,13]. [Pg.97]

Fig. 12.4. Successive models of the transition state for Sharpless epoxidation. (a) the hexacoordinate Ti core with uncoordinated alkene (b) Ti with methylhydroperoxide, allyl alcohol, and ethanediol as ligands (c) monomeric catalytic center incorporating t-butylhydroperoxide as oxidant (d) monomeric catalytic center with formyl groups added (e) dimeric transition state with chiral tartrate model (E = CH = O). Reproduced from J. Am. Chem. Soc., 117, 11327 (1995), by permission of the American Chemical Society. [Pg.1084]

The transition-state model of this reaction has been proposed as (1), based on X-ray analyses of single crystals prepared from Ti(OPr )4, (R,R)-diethyl tartrate (DET), and PhCON(OH)Ph and from Ti(OPr )4, and (R,R) N,/V -dibenzyltartramide.30-32 The Z-substituent (R2), located close to the metal center, destabilizes the desired transition state and decreases enantioselectivity (vide supra). When the Z-substituent is chiral, face selection induced by the substituent strongly affects the stereochemistry of the epoxidation, and sometimes reversed face selectivity is observed.4 In contrast, the. E-substituent (R1) protrudes into an open space and E -allylic alcohols are generally good substrates for the epoxidation. [Pg.209]

Model (1) further suggests that, if the substrate is a secondary allylic alcohol (R4 / 11, R5 = H or r4=h, rVh), enantiomeric alcohols are epoxidized at different rates when (R,R)-DAT is used as the chiral auxiliary, (5)-allylic alcohol (R4 f H, R5 = H) suffers less steric hindrance from the tartrate ligand and is oxidized faster than (R)-allylic alcohol (R4 = H, R5 f H).37 As the ester alkyl group of DAT becomes bulkier, the hindrance becomes more intense and the relative... [Pg.209]

Kinetic resolution can also be accomplished via eliminative pathways. Thus, the enantiomerically enriched allylic alcohol 102 can be prepared from the meso epoxide 96 with up to 96% ee by the action of LDA in the presence of the chiral diamine 101 and 1,8-diazabicyclo-[5.4.0]undec-7-ene (DBU). The DBU is believed to function as an aggregation modifier, and the active catalyst is theorized to be a heterodimer of the lithium amide (deprotonated 101) and DBU, although some nonlinear effects have been observed at low DBU concentrations <00JA6610>. Dipyrrolidino derivatives (e.g., 104) have also demonstrated utility with regard to kinetic resolution <00H1029>. [Pg.63]

A major advantage that nonenzymic chiral catalysts might have over enzymes, then, is their potential ability to accept substrates of different structures by contrast, an enzyme will select only its substrate from a mixture. Striking examples are the chiral phosphine-rhodium catalysts, which catalyze die hydrogenation of double bonds to produce chiral amino acids (10-12), and the titanium isopropoxide-tartrate complex of Sharpless (11,13,14), which catalyzes the epoxidation of numerous allylic alcohols. Since the enantiomeric purities of the products from these reactions are exceedingly high (>90%), we might conclude... [Pg.89]

Although it was also Henbest who reported as early as 1965 the first asymmetric epoxidation by using a chiral peracid, without doubt, one of the methods of enantioselective synthesis most frequently used in the past few years has been the "asymmetric epoxidation" reported in 1980 by K.B. Sharpless [3] which meets almost all the requirements for being an "ideal" reaction. That is to say, complete stereofacial selectivities are achieved under catalytic conditions and working at the multigram scale. The method, which is summarised in Fig. 10.1, involves the titanium (IV)-catalysed epoxidation of allylic alcohols in the presence of tartaric esters as chiral ligands. The reagents for this asyimnetric epoxidation of primary allylic alcohols are L-(+)- or D-(-)-diethyl (DET) or diisopropyl (DIPT) tartrate,27 titanium tetraisopropoxide and water free solutions of fert-butyl hydroperoxide. The natural and unnatural diethyl tartrates, as well as titanium tetraisopropoxide are commercially available, and the required water-free solution of tert-bnty hydroperoxide is easily prepared from the commercially available isooctane solutions. [Pg.278]

More than a decade of experience on Sharpless asymmetric epoxidation has confirmed that the method allows a great structural diversity in allylic alcohols and no exceptions to the face-selectivity rules shown in Fig. 10.1 have been reported to date. The scheme can be used with absolute confidence to predict and assign absolute configurations to the epoxides obtained from prochiral allylic alcohols. However, when allylic alcohols have chiral substituents at C(l), C(2) and/or C(3), the assignment of stereochemistry to the newly introduced epoxide group must be done with considerably more care. [Pg.280]

In connection with the synthetic work directed towards the total synthesis of polyene macrolide antibiotics -such as amphotericin B (i)- Sharpless and Masamune [1] on one hand, and Nicolaou and Uenishi on the other [2], have developed alternative methods for the enantioselective synthesis of 1,3-diols and, in general, 1, 3, 5...(2n + 1) polyols. One of these methods is based on the Sharpless asymmetric epoxidation of allylic alcohols [3] and regioselective reductive ring opening of epoxides by metal hydrides, such as Red-Al and DIBAL. The second method uses available monosaccharides from the "chiral pool" [4], such as D-glucose. [Pg.386]

Asymmetric epoxidation of olefins is an effective approach for the synthesis of enan-tiomerically enriched epoxides. A variety of efficient methods have been developed [1, 2], including Sharpless epoxidation of allylic alcohols [3, 4], metal-catalyzed epoxidation of unfunctionalized olefins [5-10], and nucleophilic epoxidation of electron-deficient olefins [11-14], Dioxiranes and oxazirdinium salts have been proven to be effective oxidation reagents [15-21], Chiral dioxiranes [22-28] and oxaziridinium salts [19] generated in situ with Oxone from ketones and iminium salts, respectively, have been extensively investigated in numerous laboratories and have been shown to be useful toward the asymmetric epoxidation of alkenes. In these epoxidation reactions, only a catalytic amount of ketone or iminium salt is required since they are regenerated upon epoxidation of alkenes (Scheme 1). [Pg.202]

Table 17) with two substituents in position C3 the oxygen transfer by the chiral hydroperoxides occurred from the same enantioface of the double bond, while epoxidation of the (ii)-phenyl-substituted substrates 142c,g,i resulted in the formation of the opposite epoxide enantiomer in excess. In 2000 Hamann and coworkers reported a new saturated protected carbohydrate hydroperoxide 69b , which showed high asymmetric induction in the vanadium-catalyzed epoxidation reaction of 3-methyl-2-buten-l-ol. The ee of 90% obtained was a milestone in the field of stereoselective oxygen transfer with optically active hydroperoxides. Unfortunately, the tertiary allylic alcohol 2-methyl-3-buten-2-ol was epoxidized with low enantioselectivity (ee 18%) with the same catalytic system . [Pg.403]

In 1980, Katsuki and Sharpless described the first really efficient asymmetric epoxidation of allylic alcohols with very high enantioselectivities (ee 90-95%), employing a combination of Ti(OPr-/)4-diethyl tartrate (DET) as chiral catalyst and TBHP as oxidant Stoichiometric conditions were originally described for this system, however the addition of molecular sieves (which trap water traces) to the reaction allows the epoxidation to proceed under catalytic conditions. The stereochemical course of the reaction may be predicted by the empirical rule shown in equations 40 and 41. With (—)-DET, the oxidant approaches the allylic alcohol from the top side of the plane, whereas the bottom side is open for the (-l-)-DET based reagent, giving rise to the opposite optically active epoxide. Various aspects of this reaction including the mechanism, theoretical investigations and synthetic applications of the epoxy alcohol products have been reviewed and details may be found in the specific literature . [Pg.1092]

Prior to the usage of the Ti-based catalytic system , the Sharpless group had reported their first asymmetric epoxidation of allylic alcohols using a combination of VO(acac)2/ TBHP and the chiral hydroxamic acid 67 (ee < 50%) or derivatives (ee 80%) ". In 1999, Yamamoto and coworkers described an improvement of this oxidation protocol, ee values up to 94%, by using hydroxamic acids derived from binaphthol, 68 being the... [Pg.1092]

Chiral Mo02(acac)(L ) complexes, where L is a chiral bidentate 0,0-ligand derived from (L)-frans-4-hydroxyproline bearing a Si(OEt)3 moiety, have been successfully heterogenised on zeolite-Y and tested for the epoxidation of allylic alcohols (geraniol and nerol) with TBHP (Scheme 4) [18]. [Pg.143]

With a twist on the Sharpless asymmetric epoxidation protocol, Yamamoto and co-workers <99JOC338> have developed a chiral hydroxamic acid (17) derived from binaphthol, which serves as a coordinative chiral auxiliary when combined with VO(acac)j or VO(i-PrO)j in the epoxidation of allylic alcohols. In this protocol, triphenylmethyl hydroperoxide (TiOOH) provides markedly increased enantiomeric excess, compared to the more traditional t-butyl hydroperoxide. Thus, the epoxidation of E-2,3-diphenyl-2-propenol (18) with 7.5 mol% VO(i-PiO)3 and 15 mol% of 17 in toluene (-20 °C 24 h) provided the 2S,3S epoxide 19 in 83% ee. [Pg.59]

The chiral ligand (44) was prepared starting from the cyclic a-amino acid (S)-proline80). Recently, similar chiral catalysts and related molybdenum complexes involving optically active N-alkyl-P-aminoalcohols as stable chiral ligands and acetylacetone as a replaceable bidentate ligand, were designed for the epoxidation of allylic alcohols with alkyl hydroperoxides which could be catalyzed by such metal complexes 8,). [Pg.181]

Chiral alkenyl and cycloalkenyl oxiranes are valuable intermediates in organic synthesis [38]. Their asymmetric synthesis has been accomplished by several methods, including the epoxidation of allyl alcohols in combination with an oxidation and olefination [39a], the epoxidation of dienes [39b,c], the chloroallylation of aldehydes in combination with a 1,2-elimination [39f-h], and the reaction of S-ylides with aldehydes [39i]. Although these methods are efficient for the synthesis of alkenyl oxiranes, they are not well suited for cycloalkenyl oxiranes of the 56 type (Scheme 1.3.21). Therefore we had developed an interest in the asymmetric synthesis of the cycloalkenyl oxiranes 56 from the sulfonimidoyl-substituted homoallyl alcohols 7. It was speculated that the allylic sulfoximine group of 7 could be stereoselectively replaced by a Cl atom with formation of corresponding chlorohydrins 55 which upon base treatment should give the cycloalkenyl oxiranes 56. The feasibility of a Cl substitution of the sulfoximine group had been shown previously in the case of S-alkyl sulfoximines [40]. [Pg.100]


See other pages where Allyl alcohols chiral epoxides from is mentioned: [Pg.1519]    [Pg.136]    [Pg.310]    [Pg.71]    [Pg.192]    [Pg.26]    [Pg.310]    [Pg.313]    [Pg.769]    [Pg.54]    [Pg.209]    [Pg.19]    [Pg.405]    [Pg.36]    [Pg.591]    [Pg.256]    [Pg.65]    [Pg.330]    [Pg.396]    [Pg.403]    [Pg.411]    [Pg.416]    [Pg.125]    [Pg.460]    [Pg.609]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Alcohols chiral

Alcohols epoxidation

Alcohols from epoxides

Alcohols, allylic from epoxides

Allylic epoxidations

Allylic epoxide

Allylic epoxides

Chiral allyl alcohols

Chiral allylic alcohols

Chiral epoxidations

Chiral epoxide

Chiral epoxides

Epoxidation allyl alcohol

Epoxidation allylic alcohols

Epoxidation chiral

Epoxidations allylic alcohols

Epoxide From allylic alcohol

Epoxide alcohol

Epoxides allylation

From allylic alcohols

From epoxides

© 2024 chempedia.info