Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis enzymatic reactions

CS indicated that the enolate of acetyl-CoA is significantly more stable than the enol or a proton-sharing enolic form and thus do not support the proposal that a low barrier hydrogen bond is involved in catalysis in CS. This study demonstrates the practial application of high level QM-MM studies to the elucidation of mechanistic details of an enzymatic reaction that are otherwise unclear. [Pg.234]

T. C. Bruice and S. I Benkovic, Bioorganic Mechanisms, Vol. 1, W. A. Benjamin, New brk, 1966, pp. 1-258 W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969 M. L. Bender, Mechanisms of Homogeneous Catalysis from Protons to Proteins, Wiley-Interscience, New York, 1971 C. Walsh, Enzymatic Reaction Mechanisms, W. H. Freeman, San Francisco, 1979 A. Fersht, Enzyme Structure and Mechanism, 2nd ed., W. H. Freeman, New York, 1985. [Pg.478]

The previous chapters taught us how to ask questions about specific enzymatic reactions. In this chapter we will attempt to look for general trends in enzyme catalysis. In doing so we will examine various working hypotheses that attribute the catalytic power of enzymes to different factors. We will try to demonstrate that computer simulation approaches are extremely useful in such examinations, as they offer a way to dissect the total catalytic effect into its individual contributions. [Pg.208]

The entropic hypothesis seems at first sight to gain strong support from experiments with model compounds of the type listed in Table 9.1. These compounds show a huge rate acceleration when the number of degrees of freedom (i.e., rotation around different bonds) is restricted. Such model compounds have been used repeatedly in attempts to estimate entropic effects in enzyme catalysis. Unfortunately, the information from the available model compounds is not directly transferable to the relevant enzymatic reaction since the observed changes in rate constant reflect interrelated factors (e.g., strain and entropy), which cannot be separated in a unique way by simple experiments. Apparently, model compounds do provide very useful means for verification and calibration of reaction-potential surfaces... [Pg.221]

Today SCFs are used for natural product extractions, chromatographic separations, pollution prevention, material processing and as solvents for chemical reactions.[75-77] Chemical applications include catalysis, polymerization, enzymatic reactions and organic synthesis. [Pg.284]

Enhanced thermal stability enlarges the areas of application of protein films. In particular it might be possible to improve the yield of reactors in biotechnological processes based on enzymatic catalysis, by increasing the temperature of the reaction and using enzymes deposited by the LB technique. Nevertheless, a major technical difficulty is that enzyme films must be deposited on suitable supports, such as small spheres, in order to increase the number of enzyme molecules involved in the process, thus providing a better performance of the reactor. An increased surface-to-volume ratio in the case of spheres will increase the number of enzyme molecules in a fixed reactor volume. Moreover, since the major part of known enzymatic reactions is carried out in liquid phase, protein molecules must be attached chemically to the sphere surface in order to prevent their detachment during operation. [Pg.156]

Furthermore, in the system with coupled lipase and lipoxygenase, the production rate of HP is governed by the first enzymatic reaction and mass transfer. When TL,- is small (0 to 1 mM equiv. 3 mM LA), the kinetic curve has a sigmoid shape due to surface active properties of LA and HP [25]. Hydrolysis of TL and the increase of LA favor the transfer of LA. Such a transfer allows the lipoxygenase reaction to progress. Since lipox-ygenation consumes LA and produces HP, catalysis and transfer demonstrates a reciprocal influence. [Pg.575]

The differences in the rate constant for the water reaction and the catalyzed reactions reside in the mole fraction of substrate present as near attack conformers (NACs).171 These results and knowledge of the importance of transition-state stabilization in other cases support a proposal that enzymes utilize both NAC and transition-state stabilization in the mix required for the most efficient catalysis. Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82%, 57%, and 1% of chorismate conformers were found to be NAC structures (NACs) in water, methanol, and the gas phase, respectively.172 The fact that the reaction occurred faster in water than in methanol was attributed to greater stabilization of the TS in water by specific interactions with first-shell solvent molecules. The Claisen rearrangements of chorismate in water and at the active site of E. coli chorismate mutase have been compared.173 It follows that the efficiency of formation of NAC (7.8 kcal/mol) at the active site provides approximately 90% of the kinetic advantage of the enzymatic reaction as compared with the water reaction. [Pg.415]

In this chapter we have seen that enzymatic catalysis is initiated by the reversible interactions of a substrate molecule with the active site of the enzyme to form a non-covalent binary complex. The chemical transformation of the substrate to the product molecule occurs within the context of the enzyme active site subsequent to initial complex formation. We saw that the enormous rate enhancements for enzyme-catalyzed reactions are the result of specific mechanisms that enzymes use to achieve large reductions in the energy of activation associated with attainment of the reaction transition state structure. Stabilization of the reaction transition state in the context of the enzymatic reaction is the key contributor to both enzymatic rate enhancement and substrate specificity. We described several chemical strategies by which enzymes achieve this transition state stabilization. We also saw in this chapter that enzyme reactions are most commonly studied by following the kinetics of these reactions under steady state conditions. We defined three kinetic constants—kai KM, and kcJKM—that can be used to define the efficiency of enzymatic catalysis, and each reports on different portions of the enzymatic reaction pathway. Perturbations... [Pg.46]

Finally, in the sense that the imposition of conformational restrictions or specific solvent effects on an organic molecule are forms of strain, non-covalent catalysis by the cycloamyloses may provide a simple model for the investigation of strain and distortion effects in enzymatic reactions. [Pg.249]

This final chapter summarizes the enzyme-catalyzed asymmetric reactions and introduces some new developments in the area of asymmetric synthesis. Among the new developments, cooperative asymmetric catalysis is an important theme because it is commonly observed in enzymatic reactions. Understanding cooperative asymmetric catalysis not only makes it possible to design more enan-tioselective asymmetric synthesis reactions but also helps us to understand how mother nature contributes to the world. [Pg.501]

Conventionally, organometallic chemistry and transition-metal catalysis are carried out under an inert gas atmosphere and the exclusion of moisture has been essential. In contrast, the catalytic actions of transition metals under ambient conditions of air and water have played a key role in various enzymatic reactions, which is in sharp contrast to most transition-metal-catalyzed reactions commonly used in the laboratory. Quasi-nature catalysis has now been developed using late transition metals in air and water, for instance copper-, palladium- and rhodium-catalyzed C-C bond formation, and ruthenium-catalyzed olefin isomerization, metathesis and C-H activation. Even a Grignard-type reaction could be realized in water using a bimetallic ruthenium-indium catalytic system [67]. [Pg.294]

There is a huge literature on enzymes and how they work. Two of the best treatments are A. Eersht, Structure and Mechanism in Protein Science A Guide to Enzyme Catalysis and Protein Folding, W. H. Ereeman, New York, 1999 and P. A. Prey and A. D. Hegeman, Enzymatic Reaction Mechanisms, Oxford University Press, New York, 2007. [Pg.377]

Several fundamental aspects of enzymatic catalysis must be considered in any discussion of the chemistry of enzymatic reactions. First, an enzyme-catalysed reaction proceeds with formation of an... [Pg.5]

These ideas have been highly advantageous in regard to the development of chemical catalysis in aqueous solution. If the above concepts are correct, then an enzymatic reaction proceeding through an enzyme-substrate complex with the substrate bound close to appropriate functional groups is quite analogous to a chemical intramolecular reaction. Substantial effort heis therefore been expended on the study of such reactions in attempts better to comprehend enzyme catalysis (Bruice, 1970 Kirby and Fersht, 1971),... [Pg.6]

The word enamine was coined in 1927 by Wittig [27], However, at that time, enamines were usually not considered as reactive intermediates. An early example of enamine catalysis that was not explicitly recognized as enamine-based reaction was the reaction of isatin with ketone nucleophiles (acetone and acetophenone), first pnblished by Lindwall and coworkers in 1932 [28, 31]. Later, the interconversion of imininm ions and enamines in enzymatic reactions was recognized by Westheimer [32, 354]. The first person to propose a modem enamine-based... [Pg.31]

Lipase has been used in organic solvents to produce useful compounds. For example, Zark and Klibanov (8) reported wide applications of enzymes to esterification in preparing optically active alcohols and acids. Inada et al (9) synthesized polyethylene glycol-modified lipase, which was soluble in organic solvent and active for ester formation. These data reveal that lipases are very useful enzymes for the catalysis different types of reactions with rather wide substrate specificities. In this study, it was found that moditied lipase could also synthesize esters and various lipids in organic solvents. Chemically moditied lipases can help to solve today s problems in esteritication and hopefully make broader use of enzymatic reactions that are attractive to the industry. [Pg.179]

Acid-base catalysis appears to be an important factor in virtually all enzymatic reactions. The rates of proton transfer reactions have been well studied in model systems,30 but not during the course of enzyme catalysis. The protonation and deprotonation of acids and bases can be represented as... [Pg.184]


See other pages where Catalysis enzymatic reactions is mentioned: [Pg.2827]    [Pg.211]    [Pg.321]    [Pg.321]    [Pg.233]    [Pg.461]    [Pg.84]    [Pg.169]    [Pg.204]    [Pg.224]    [Pg.436]    [Pg.28]    [Pg.30]    [Pg.364]    [Pg.199]    [Pg.94]    [Pg.186]    [Pg.332]    [Pg.502]    [Pg.95]    [Pg.227]    [Pg.229]    [Pg.368]    [Pg.2]    [Pg.6]    [Pg.19]    [Pg.92]    [Pg.96]    [Pg.116]    [Pg.22]    [Pg.165]    [Pg.342]    [Pg.177]   
See also in sourсe #XX -- [ Pg.482 , Pg.483 , Pg.484 , Pg.485 , Pg.486 , Pg.487 , Pg.488 , Pg.489 , Pg.490 , Pg.491 , Pg.492 , Pg.493 , Pg.494 , Pg.495 , Pg.496 ]

See also in sourсe #XX -- [ Pg.482 , Pg.483 , Pg.484 , Pg.485 , Pg.486 , Pg.487 , Pg.488 , Pg.489 , Pg.490 , Pg.491 , Pg.492 , Pg.493 , Pg.494 , Pg.495 , Pg.496 ]

See also in sourсe #XX -- [ Pg.482 , Pg.483 , Pg.484 , Pg.485 , Pg.486 , Pg.487 , Pg.488 , Pg.489 , Pg.490 , Pg.491 , Pg.492 , Pg.493 , Pg.494 , Pg.495 , Pg.496 ]

See also in sourсe #XX -- [ Pg.482 , Pg.483 , Pg.484 , Pg.485 , Pg.486 , Pg.487 , Pg.488 , Pg.489 , Pg.490 , Pg.491 , Pg.492 , Pg.493 , Pg.494 , Pg.495 , Pg.496 ]




SEARCH



Catalysis enzymatic

Enzymatic Catalysis of Electrochemical Reactions

Enzymatic catalysis first-order reactions

Enzymatic catalysis reaction rate

Reaction Enzymatic reactions

© 2024 chempedia.info