Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications environmental catalysts

One of the major breakthroughs in nanotechnology is the use of nanomaterials as catalysts for environmental applications [149]. Nanomaterials have been developed to improve the properties of catalysts, enhance reactivity towards pollutants, and improve their mobility in various environmental media [150]. Nanomaterials offer applications to pollution prevention through improved catalytic processes that reduce the use of toxic chemicals and eliminate wastes. Nanomaterials also offer applications in environmental remediation and, in the near future, opportunities to create better sensors for process controls. [Pg.231]

New reactor technologies are currently under development, and these include meso- and micro-structured reactors or the use of membranes. Among meso-structured reactors, monolithic catalysts play a pre-eminent role in environmental applications, initially in the cleaning of automotive exhaust gases. Beside this gas-solid application, other meso-structures such as membranes [57, 58], corrugated plate or other arranged catalysts and, of course, monoliths can be used as multiphase reactors [59, 60]. These reactors also offer a real potential for process intensification, which has already been demonstrated in commercial applications such as the production of hydrogen peroxide. [Pg.1541]

The previous referred inconveniences have prompted an increasing interest in the development of alternative, essentially neutral and more environmental-friendly catalysts to promote the rearrangement of O-unsubstituted oximes. The development of highly efficient and selective transformations and also of processes for catalyst recovery and its reuse are the aim of some of the more recent studies. Much of this work is being done in industry to improve current production processes and is the subject of new patent applications. During the last two decades environment concerns have led to the development of green, simple and cost-effective catalytic systems for the Beckmann rearrangement. [Pg.395]

The optimization of the catalyst formulation is relevant not only to the active species but also to the structure of the support. Indeed, structured catalysts in the form of monolith or foam offer great advantages over pellet catalysts, the most important one being the low pressure drop associated with the high flow rates that are common in environmental applications. [Pg.297]

The flue gas passes through a number of small diameter high-efhciency cyclonic elements arranged in parallel and contained with the separator vessel. The UOP design uses an axial flow cyclone. After the catalyst particles are removed, the clean flue gas leaves the separator. A small stream of gas, called the underflow, exits the separator through the bottom of the TSS. In an environmental application, the underflow is diverted to a fourth stage separator (FSS) that is typically a barrier filter. The underflow rate is typically 2-5% of the total flue gas rate and is set by use of a critical flow nozzle. [Pg.357]

When titanium oxides are irradiated with UV light that is greater than the band-gap energy of the catalyst (about X < 380 nm), electrons (e ) and holes (h+) are produced in the conduction and valence bands, respectively. These electrons and holes have a high reductive potential and oxidative potential, respectively, which, together, cause catalytic reactions on the surfaces namely photocatalytic reactions are induced. Because of its similarity with the mechanism observed with photosynthesis in green plants, photocatalysis may also be referred to as artificial photosynthesis [1-4]. As will be introduced in a later section, there are no limits to the possibilities and applications of titanium oxide photocatalysts as environmentally harmonious catalysts and/or sustainable green chemical systems. ... [Pg.284]

Currently, a wide range of technological applications is based on the sorptive and catalytic properties of sepiolite [2], Sepiolite is increasingly being used as a decolorizing agent [3], as a catalyst or catalyst carrier [4-6], and as odorant adsorbents in environmental applications [7-9], Several papers have appeared recently that examine the structural, textural and sorptive properties of untreated sepiolite [10-12] and of sepiolite subjected previously to acid and/or thermal treatment [13-16], Sepiolite has also been used recently as... [Pg.551]

Environmental applications require detoxification of hazardous substances to a level of parts per million (ppm) and even parts per billion (ppb). These purity levels, which were rarely considered in product synthesis, are now possible for wastewater due to Fenton s reagent. Fenton s oxidant is cost effective and relatively fast in destroying many toxics (Bigda, 1996). It attacks all reactive substrate concentrations under acidic conditions. Hydrogen peroxide is used to remove such contaminants as cyanide, sulfides, sulfites, chrome, and heavy metals by varying batch conditions. With an iron catalyst, the process often oxidizes organics, as well as reducing hexavalent chrome to trivalent precipitable form. [Pg.240]

In 2002, an interesting concept was proposed for coupling a C02-based supercritical extraction with air oxidation in order to remove and decompose pollutants from gases or liquids (134). An exemplary process scheme according to this preliminary concept is shown in Figure 5. Possible (future) environmental applications of such an integrated supercritical extraction-reaction system include treatment of liquid effluents, regeneration of catalysts and adsorption materials, and soil decontamination. [Pg.282]

A major aspect of research and development in industrial catalysis is the identification of catalytic materials and reaction conditions that lead to effective catalytic processes. The need for efficient approaches to facilitate the discovery of new solid catalysts is particularly timely in view of the growing need to expand the applications of catalytic technologies beyond the current chemical and petrochemical industries. For example, new catalysts are needed for environmental applications such as treatment of noxious emissions or for pollution prevention. Improved catalysts are needed for new fuel cell applications. The production of high-value specialty chemicals requires the development of new catalytic materials. Furthermore, new catalysts may be combined with biochemical processes for the production of chemicals from renewable resources. The catalysts required for these new applications may be different from those in current use in the chemical and petrochemical industries. [Pg.162]

The catalytic oxidation of sulphurous acid in aqueous medium to sulphuric acid [138, 84] has been suggested as a probe reaction for the ability of a carbon to activate molecular oxygen at ambient conditions. Besides this remarkable property the reaction is of interest in atmospheric chemistry where it provides a sink for all nonphotochemically oxidized sulfur dioxide [215]. Carbon plays a special role in this environmental application as both pure carbon and active particles (iron oxide [84] for example) anchored to carbon can act as efficient catalysts. The detailed analysis of the reactivity of various types of carbon [138] reveal that basic surface oxides (see Fig. 23) are important to fix the educt HSOj ion. It was found, in addition, that the... [Pg.144]

Monolithic supports are commonly used for environmental applications and will be discussed in more detail later.-5 Batch reactors are used mostly for small-scale production such as the hydrogenation of intermediates in the production of medicines in the pharmaceutical industry. The catalyst powder is mixed in a precise amount of reactant in a pressurized-stirred autoclave. A gaseous reactant, usually H2, is introduced at elevated pressures and the reaction proceeds with continuous monitoring of the H2 consumed. The catalyst is separated from the product via filtration and is often used again depending on its retained activity and selectivity. [Pg.281]

Sulfur oxides (S02 and S03) present in flue gases from upstream combustion operations adsorb onto the catalyst surface and in many cases form inactive metal sulfates. It is the presence of sulfur compounds in petroleum-based fuels that prevent the super-sensitive base metal catalysts (i.e., Cu, Ni, Co, etc.) from being used as the primary catalytic components for many environmental applications. Precious metals are inhibited by sulfur and lose some activity but usually reach a lower but steady state activity. Furthermore the precious metals are reversibly poisoned by sulfur compounds and can be regenerated simply by removing the poison from the gas stream. Heavy metals such as Pb, Hg, As, etc. alloy with precious metals and permanently deactivate them. Basic compounds such as NH3 can deactivate an acidic catalyst such as a zeolite by adsorbing and neutralizing the acid sites. [Pg.286]

Zeolites play a major role as catalysts and/or adsorbents in the petroleum, chemical, and lately in a growing number of environmental applications. The reader should consult references available.17... [Pg.290]

It is truly remarkable that catalysts can function so well in the exhaust of the modem highspeed vehicle. This fact has raised confidence in industry to use different monolithic (ceramic and metal) structures as supports for catalysts for other environmental applications such as diesel exhausts, power and chemical plants, restaurants, and even on widebody aircraft. [Pg.295]

Tronconi, E. Groppi, G. Structured Catalysts in environmental applications, 6th Topsoe Catalysis Forum 2009. Munkerupgaard Denmark, 2009 www.topsoe.com/sitecore/shell/ Applications/ /media/PDF%20files/Topsoe Catalysis Forum/2009/Tronconi.ashx. [Pg.325]

Structured catalysts, mainly monolithic ones, are now used predominantly in environmental applications, first of all in the cleaning of automotive exhaust gases. Monolithic reactors have become the most commonly used sort of chemical reactors several hundred... [Pg.647]

The effect of irreversible inhibition of acetylcholinesterase has been used in dendrimer-based electrochemical biosensors for environmental applications. Acetylcholinesterase is a very efficient protein catalyst for the hydrolysis of its physiological substrate acetylcholine. Organophosphorus and carbamic pesticides, heavy metals and detergents exert strong specific... [Pg.23]

Applications and roles for new metal coordination complexes continue to be discovered daily. Coordination complexes in the development of new architectural materials such as nanostructures and in environmental applications (e.g., green catalysts and bioremediation Chapter 7) are on the frontiers of inorganic chemistry in the twenty-first century however, even these exciting and splashy new systems remain governed by the fundamentals of metal ion chemistry. Advancements in applied fields cannot be fully realized without the knowledge imparted by pure and basic research, especially as metal ions are placed in novel environments. [Pg.14]

The realistic applications of the nanotechnology itself are not very clear at present however, many research projects were related to the miniaturization for the electronics, sensors, immunodiagnos-tics, and other biomedical applications. Another approach of nanotechnology is development of metal nanostructure which can be useful as catalysts for various industrial processes, energy conversion devices, or environmental applications. [Pg.283]


See other pages where Applications environmental catalysts is mentioned: [Pg.203]    [Pg.205]    [Pg.111]    [Pg.511]    [Pg.61]    [Pg.2]    [Pg.54]    [Pg.356]    [Pg.831]    [Pg.94]    [Pg.242]    [Pg.501]    [Pg.161]    [Pg.197]    [Pg.71]    [Pg.515]    [Pg.271]    [Pg.111]    [Pg.3379]    [Pg.3891]    [Pg.709]    [Pg.7]    [Pg.60]    [Pg.89]    [Pg.16]    [Pg.2]    [Pg.381]    [Pg.288]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Applications environmental

Environmental Applications of Multifunctional Nanocomposite Catalytic Materials Issues with Catalyst Combinations

Environmental catalyst

© 2024 chempedia.info