Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination metabolites

This section reviews the complex currents lobsters generate to eliminate metabolites and broadcast chemical signals and the return currents from which they obtain chemical signals and metabolic energy. Lobsters are examples of hard-shelled animals that store urine and feces, allowing them to be chemically "quiet" when necessary. [Pg.164]

The diuretic effect of spironolactone develops fully only with continuous administration for several days. Two possible explanations are (1) the conversion of spironolactone into and accumulation of the more slowly eliminated metabolite canrenone (2) an inhibition of aldosterone-stimulated protein synthesis would become noticeable only if existing proteins had become nonfunctional and needed to be replaced by de novo synthesis. A particular adverse effect results from interference with gonadal hormones, as evidenced by the development of gynecomastia (enlargement of male breast). Clinical uses include conditions of increased aldosterone secretion, e.g., liver cirrhosis with ascites. [Pg.164]

Elimination metabolites are predominantiy eliminated in the urine as glucuronide and sulfide conjugates. Less than 5% of the drug is excreted unchanged in the urine, and less than 1% is eliminated in bile. [Pg.259]

U) - eliminated metabolites, (B) - circulating metabolites, (N) - postulated intermediate metabolites. [Pg.34]

GC-MS analysis of urine and bile extracts showed the major eliminated metabolites of IPBP to be ring hydroxylated derivatives of the tertiary carbinol and the propionic acid. Minor amounts of ring hydroxylated atrolactic acid and the primary carbinol were also found (Fig. 2). While the atrolactic acid was found to be a major circulating matabolite no detectable quantity of this acid could be found in the urine or bile. The failure to detect the primary carbinol in the plasma and the detection of only small eliminated quantities of its ring hydroxylated derivative implied its rapid metabolic conversion to the propionic acid. Other minor metabolites included 2- -biphenylyl-l,2-propranediol a possible precursor for the atrolactic acid. [Pg.35]

Dog. The atrolactic acid and the tertiary carbinol (Fig. 4) were the only circulating metabolites detected by GC-MS in the plasma of dogs following oral administration of IPBP. Similar analysis of urine extracts showed the eliminated metabolites to be the atrolactic acid and ring hydroxylated tertiary carbinol. [Pg.39]

Disopyr mide. Disopyramide phosphate, a phenylacetamide analogue, is a racemic mixture. The dmg can be adininistered po or iv and is useful in the treatment of ventricular and supraventricular arrhythmias (1,2). After po administration, absorption is rapid and nearly complete (83%). Binding to plasma protein is concentration-dependent (35—95%), but at therapeutic concentrations of 2—4 lg/mL, about 50% is protein-bound. Peak plasma concentrations are achieved in 0.5—3 h. The dmg is metabolized in the fiver to a mono-AJ-dealkylated product that has antiarrhythmic activity. The elimination half-life of the dmg is 4—10 h. About 80% of the dose is excreted by the kidneys, 50% is unchanged and 50% as metabolites 15% is excreted into the bile (1,2). [Pg.113]

Time to peak plasma concentration depends on the rate of IV dosing but is usually achieved in 45—90 seconds. Therapeutic plasma concentrations are 1.5—5.0 )J.g/mL, and concentrations above 5 )J.g/mL maybe toxic. The elimination half-life after a bolus iv dose is 8 min the elimination half-life after a 24 h iv infusion is about 100 min. The dmg is eliminated by the kidneys. Ten percent is unchanged and the remainder is in the form of inactive metabolites... [Pg.113]

Phenytoin s absorption is slow and variable yet almost complete absorption eventually occurs after po dosing. More than 90% of the dmg is bound to plasma protein. Peak plasma concentrations are achieved in 1.5—3 h. Therapeutic plasma concentrations are 10—20 lg/mL but using fixed po doses, steady-state levels are achieved in 7—10 days. Phenytoin is metabolized in the fiver to inactive metabolites. The plasma half-life is approximately 22 h. Phenytoin is excreted primarily in the urine as inactive metabolites and <5% as unchanged dmg. It is also eliminated in the feces and in breast milk (1,2). Prolonged po use of phenytoin may result in hirsutism, gingival hyperplasia, and hypersensitivity reactions evidenced by skin rashes, blood dyscrasias, etc... [Pg.113]

EoUowing po administration moricizine is completely absorbed from the GI tract. The dmg undergoes considerable first-pass hepatic metabolism so that only 30—40% of the dose is bioavailable. Moricizine is extensively (95%) bound to plasma protein, mainly albumin and a -acid glycoprotein. The time to peak plasma concentrations is 0.42—3.90 h. Therapeutic concentrations are 0.06—3.00 ]l/niL. Using radiolabeled moricizine, more than 30 metabolites have been noted but only 12 have been identified. Eight appear in urine. The sulfoxide metabolite is equipotent to the parent compound as an antiarrhythmic. Elimination half-life is 2—6 h for the unchanged dmg and known metabolites, and 84 h for total radioactivity of the labeled dmg (1,2). [Pg.113]

Tocainide is rapidly and well absorbed from the GI tract and undergoes very fitde hepatic first-pass metabolism. Unlike lidocaine which is - 30% bioavailable, tocainide s availability approaches 100% of the administered dose. Eood delays absorption and decreases plasma levels but does not affect bio availability. Less than 10% of the dmg is bound to plasma proteins. Therapeutic plasma concentrations are 3—9 jig/mL. Toxic plasma levels are >10 fig/mL. Peak plasma concentrations are achieved in 0.5—2 h. About 30—40% of tocainide is metabolized in the fiver by deamination and glucuronidation to inactive metabolites. The metabolism is stereoselective and the steady-state plasma concentration of the (3)-(—) enantiomer is about four times that of the (R)-(+) enantiomer. About 50% of the tocainide dose is efirninated by the kidneys unchanged, and the rest is efirninated as metabolites. The elimination half-life of tocainide is about 15 h, and is prolonged in patients with renal disease (1,2,23). [Pg.113]

Sotalol is rapidly and almost completely (>90%) absorbed. Bioavahabhity of absorbed dmg is 89—100%. Peak plasma levels are achieved in 2—4 h. Sotalol is 50% bound to plasma proteins. Plasma half-life of the compound is about 5.2 h. No metabolites of sotalol have been identified indicating littie metabolism. The dmg is excreted mainly by the kidneys (80—90%) and about 10% is eliminated in the feces. The plasma half-life is prolonged in patients having renal failure. Kinetics of the compound are not affected by changes in liver function (1,2). Sotalol has ah the adverse effects of -adrenoceptor blockers including myocardial depression, bradycardia, transient hypotension, and proarrhythmic effects (1,2). [Pg.121]

After po dosing, verapamil s absorption is rapid and almost complete (>90%). There is extensive first-pass hepatic metabolism and only 10—35% of the po dose is bioavahable. About 90% of the dmg is bound to plasma proteins. Peak plasma concentrations are achieved in 1—2 h, although effects on AV nodal conduction may be apparent in 30 min (1—2 min after iv adrninistration). Therapeutic plasma concentrations are 0.125—0.400 p.g/mL. Verapamil is metabolized in the liver and 12 metabolites have been identified. The principal metabolite, norverapamil, has about 20% of the antiarrhythmic activity of verapamil (3). The plasma half-life after iv infusion is 2—5 h whereas after repeated po doses it is 4.5—12 h. In patients with liver disease the elimination half-life may be increased to 13 h. Approximately 50% of a po dose is excreted as metabolites in the urine in 24 h and 70% within five days. About 16% is excreted in the feces and about 3—4% is excreted as unchanged dmg (1,2). [Pg.121]

The toxic effect depends both on lipid and blood solubility. I his will be illustrated with an example of anesthetic gases. The solubility of dinitrous oxide (N2O) in blood is very small therefore, it very quickly saturates in the blood, and its effect on the central nervous system is quick, but because N,0 is not highly lipid soluble, it does not cause deep anesthesia. Halothane and diethyl ether, in contrast, are very lipid soluble, and their solubility in the blood is also high. Thus, their saturation in the blood takes place slowly. For the same reason, the increase of tissue concentration is a slow process. On the other hand, the depression of the central nervous system may become deep, and may even cause death. During the elimination phase, the same processes occur in reverse order. N2O is rapidly eliminated whereas the elimination of halothane and diethyl ether is slow. In addition, only a small part of halothane and diethyl ether are eliminated via the lungs. They require first biotransformation and then elimination of the metabolites through the kidneys into the... [Pg.260]

FIGURE 5.37 Janus faces of the biotransfbrmation of xenobiotics. On one hand metabolism leads to inactivation and elimination of xenobiotics, but on the other hand many metabolites are reactive and may cause deleterious effects by binding to DNA, proteins, and other macromolecules. [Pg.267]

In order to reduce or eliminate off-line sample preparation, multidimensional chromatographic techniques have been employed in these difficult analyses. LC-GC has been employed in numerous applications that involve the analysis of poisonous compounds or metabolites from biological matrices such as fats and tissues, while GC-GC has been employed for complex samples, such as arson propellants and for samples in which special selectivity, such as chiral recognition, is required. Other techniques include on-line sample preparation methods, such as supercritical fluid extraction (SFE)-GC and LC-GC-GC. In many of these applications, the chromatographic method is coupled to mass spectrometry or another spectrometiic detector for final confirmation of the analyte identity, as required by many courts of law. [Pg.407]

The pharmacokinetics of azacitidine shows that it is rapidly absorbed after s.c. administration with the peak plasma concentration occurring after 0.5 h. The bioavailability of s.c. azacitidine relative to i.v. azacitidine is approximately 89%. Urinary excretion is the primary route of elimination of azacitidine and its metabolites. The mean elimination half-lives are about 4 h, regardless of i.v. or s.c. administration. [Pg.152]

Cellular defense mechanisms against toxins (A multistep mechanism for elimination of toxic metabolites and xenobiotics. It involves various transport, oxidation, and conjugation steps.) are usually divided into several steps as it is visualized on Fig. 3. Organic anion transporting proteins (OATPs) are responsible for the cellular uptake of endogenous compounds and... [Pg.750]

After oral administration, acetylsalicylic acid is rapidly and almost completely absorbed but in the intestinal mucosa it is partly deacetylated to salicylic acid, which also exhibits analgesic activity. The plasma half-life of acetylsalicylic acid is 15 min whereas that of salicylic acid, at low dosages of acetylsalicylic acid, is 2-3 h. Salicylic acid is eliminated more slowly when acetylsalicylic acid is administered at high dose rates because of saturation of the liver enzymes. The metabolites are mainly excreted via the kidney. [Pg.874]

Ibuprofen is the most thoroughly researched 2-ary lpropionic acid. It is a relatively weak, non-selective inhibitor of COX. In epidemiological studies, ibuprofen compared to all other conventional NSAIDs, has the lowest relative risk of causing severe gastrointestinal side effects. Because of this, ibuprofen is the most frequently used OTC ( over the counter , sale available without prescription) analgesic. Ibuprofen is highly bound to plasma proteins and has a relatively short elimination half-life ( 2 h). It is mainly glucuronidated to inactive metabolites that are eliminated via the kidney. [Pg.875]

Uric acid is the endproduct of purine metabolism in man. Uric acid has a lower solubility than its progenitor metabolites, hypoxanthine and xanthine. Impaired uric acid elimination and/or increased uric acid production result in hyperuricemia and increase the risk of gouty arthritis. At physiological pH, 99% of the uric acid molecules are actually in the form of the urate salt. A decrease in pH increases the fraction of uric acid molecules relative to urate molecules. Uric acid possesses lower solubility than urate. [Pg.1267]

However, very recent studies by Fish and his co-workers (467) with butyltin compounds showed that the primary, metabolic reaction is not Sn-C bond-cleavage but carbon hydroxylation of the n-butyl group. Using [l- C]tetrabutyltin in an in vitro study, the major, primary metabolite was identified as a 2-hydroxybutyltributyltin derivative that underwent a rapid /3-elimination reaction to afford 1-butene and a tri-butyltin compound (467). [Pg.48]

Overall, elimination of cocainic compounds has been observed to be the most efficient under CAS treatment (above 90% in most cases), compared to the rest of the investigated drugs of abuse and metabolites. However, they are not or... [Pg.211]


See other pages where Elimination metabolites is mentioned: [Pg.236]    [Pg.168]    [Pg.542]    [Pg.2498]    [Pg.338]    [Pg.156]    [Pg.34]    [Pg.155]    [Pg.236]    [Pg.168]    [Pg.542]    [Pg.2498]    [Pg.338]    [Pg.156]    [Pg.34]    [Pg.155]    [Pg.224]    [Pg.224]    [Pg.224]    [Pg.307]    [Pg.308]    [Pg.272]    [Pg.165]    [Pg.403]    [Pg.318]    [Pg.336]    [Pg.874]    [Pg.63]    [Pg.201]    [Pg.202]    [Pg.211]    [Pg.212]    [Pg.228]    [Pg.247]    [Pg.275]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Eliminated metabolites

© 2024 chempedia.info