Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrospray Ionisation ESI

The ion source produces ionisation of the analyte as it enters the mass spectrometer. Ionisation can be brought about in a number of ways. However, the so-called soft ionisation techniques used in LC-MS systems are electrospray ionisation (ESI), atmospheric pressure chemical ionisation (APCI), and, more recently, atmospheric pressure photoionisation (APPI). [Pg.105]


Fast atom bombardment (FAB) Plasma desorption (PD) Liquid secondary-ion mass spectrometry (LSIMS) Thermospray (TSP)/plasmaspray (PSP) Electrohydrodynamic ionisation (EHI) Multiphoton ionisation (MPI) Atmospheric pressure chemical ionisation (APCI) Electrospray ionisation (ESI) Ion spray (ISP) Matrix-assisted laser desorption/ionisation (MALDI) Atmospheric pressure photoionisation (APPI) Triple quadrupole (QQQ) Four sector (EBEB) Hybrid (EBQQ) Hybrid (EB-ToF, Q-ToF) Tandem ToF-ToF Photomultiplier... [Pg.352]

A range of MS ionisation techniques are available. Atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) are becoming the methods of choice for the analysis of low molecular weight additives of mass/ charge (m/z) ratio <3,000. [Pg.570]

Giguere and Mayer [121] reported on the dissociation of gas-phase poly(vinyl acetate) (PVAc), see Figure 21, ionised by Li+ investigated by electrospray-ionisation (ESI) mass and collision induced dissociation (CID) mass spectrometry. [Pg.717]

In off-line coupling of LC and MS for the analysis of surfactants in water samples, the suitability of desorption techniques such as Fast Atom Bombardment (FAB) and Desorption Chemical Ionisation was well established early on. In rapid succession, new interfaces like Atmospheric Pressure Chemical Ionisation (APCI) and Electrospray Ionisation (ESI) were applied successfully to solve a large number of analytical problems with these substance classes. In order to perform structure analysis on the metabolites and to improve sensitivity for the detection of the various surfactants and their metabolites in the environment, the use of various MS-MS techniques has also proven very useful, if not necessary, and in some cases even high-resolution MS is required. [Pg.25]

These problems have largely been solved by the development of a wide variety of powerful LC-MS interfaces (reviewed in Refs. [1-3]). In the following paragraphs, the two most widely used atmospheric pressure ionisation (API) systems, namely atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI), are briefly described, along with the older technique of thermospray ionisation... [Pg.144]

Several years later, the next step in the application of MS-MS for mixture analysis was developed by Hunt et al. [3-5] who described a master scheme for the direct analysis of organic compounds in environmental samples using soft chemical ionisation (Cl) to perform product, parent and neutral loss MS-MS experiments for identification [6,7]. The breakthrough in LC-MS was the development of soft ionisation techniques, e.g. desorption ionisation (continuous flow-fast atom bombardment (CF-FAB), secondary ion mass spectrometry (SIMS) or laser desorption (LD)), and nebulisation ionisation techniques such as thermospray ionisation (TSI), and atmospheric pressure ionisation (API) techniques such as atmospheric pressure chemical ionisation (APCI), and electrospray ionisation (ESI). [Pg.152]

Detection of M2D-C3-0-(E0)n-CH3 was possible by both positive ion mode atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) MS methods, with good response down to absolute injections of 0.1 ng. However, ionisation in the negative ion mode was negligible at all concentrations analysed, as the polyether-modified structure has no sites capable of adducting with anions, nor has it any moieties capable of cleavage to yield anionic species. [Pg.240]

Owing to the anionic character of LAS, an electrospray ionisation (ESI) interface operated in negative ion mode is particularly attractive for the mass spectrometric detection of this surfactant type. Consequently, a great part of the atmospheric pressure ionisation-mass spectrometry (API-MS) work on LAS is devoted to the application of (— )-ESI-MS. [Pg.318]

The qualitative determination of anionic surfactants in environmental samples such as water extracts by flow injection analysis coupled with MS (FIA-MS) applying a screening approach in the negative ionisation mode sometimes may be very effective. Using atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI), coupled with FIA or LC in combination with MS, anionic surfactants are either predominantly or sometimes exclusively ionised in the negative mode. Therefore, overview spectra obtained by FIA—MS(—) often are very clear and free from disturbing matrix components that are ionisable only in the positive mode. However, the advantage of clear... [Pg.336]

Fenn published work in 1989 [7-9] showing ionisation of large molecules by electrospray ionisation (ESI). Fenn built on the early work of Malcolm Dole [10] but Fenn used a counter current gas to assist with desolvation of the droplets and aid the formation of the ions. In the early 1990s, experiments with atmospheric pressure ionisation (API) showed promise and in a short space of time the first commercial systems utilising the new techniques of ESI [11] and Atmospheric Pressure Chemical Ionisation (APCI) began to appear on analysts benches. The sensitive, reliable and easily operated LC-MS system had arrived. [Pg.157]

Triple-quadrupole mass spectrometer coupled with an electrospray ionisation (ESI) source. [Pg.639]

Two techniques that have become preffered for ionisation of proteins/peptides is electrospray ionisation (ESI) and matrix-assisted laser desorption/ionisation (MALDI). Although different combinations of ionisation techniques and mass analyser exist, MALDI usually is coupled with a time-of-flight (TOF) (Figure 7) tube as a mass analyser while ESI is tradionally combined with quadrupole mass analysers. Instruments capable of MS/MS have the ability to select ions of particular m/z ratio from a mixture, to fragment selected ions and to record the precise masses of the resulting fragment ions. If this process is applied to the analysis of peptide ions, in principle the amino acid sequence of the peptide can be deduced. [Pg.862]

Mass spectrometry has assumed great importance in determinations of the molar masses of biological macromolecules, even quite large ones. This is due to developments such as electrospray ionisation (ESI) and matrix assisted laser desorption/ ionisation (MALDI), which have made it possible to determine the molar masses of biopolymers up to several 100 kDa (Pitt 1996 Kellner et al. 1999 Snyder 2000). The combination of MALDI techniques with time-of-flight mass spectrometers (MALDI-TOF) is of particular significance for determination of the molar masses of proteins with high sensitivity (typically pmol quantities, although exceptionally fmol) and precision (proteins up to 100 kDa with precision of about 0.01 %). Mass spectrometry can provide very accurate measurements of protein molar mass that can yield information about even minor structural modifications not readily accessible by other means. [Pg.157]

The classical area of application of mass spectrometry has been with small volatile compounds, although non-volatile samples could be analysed if they were suitably derivatised. The application of mass spectrometry to large complex molecules like proteins has been made possible by the development of novel ionisation techniques which enable large molecules (> 200 kDa) to be introduced into the mass spectrometer in an intact form suitable for analysis (Siuzdak 1996 Dass 2000). Of the various techniques that have been developed, electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) are the ones best suited for use with macromolecules and macromolecular complexes. [Pg.264]

Although FAB has been used in polymer analysis, problems with fragmentation and the relatively low mass limit has made this less popular as new techniques have emerged. Plasma desorption has been used successfully but this too has waned in popularity with commercial spectrometers not really readily available. To a large extent polymer mass spectrometry equates to MALDI time-of-flight and the remainder of this article will bear this in mind. However, the use of electrospray ionisation (ESI) will be considered in conjunction with either quadrupole detectors or ion cyclotron resonance (ICR) N. B. ICR detectors can also be used with MALDI, as this is important and probably not as widely used as it could be. [Pg.62]

Due to the recognized importance of mass spectrometry in the structure elucidation of alkylpyridinium compounds, a detailed MS analysis of synthetic cyclostellettamines H-L (60-63) has recently been reported [46], by using powerful analytical techniques such as high resolution electrospray ionisation (ESI)-MS and with fragmentation experiments carried out by ESI atmospheric pressure ionization-collision induced dissociation (ESI-API-CID)-MS measurements. This analysis allowed a reliable identification of the alkyl chain lengths of cyclostellettamines, and is proposed as a suitable systematic methodology... [Pg.380]

Mass spectroscopy [electron ionisation (El), chemical ionisation (Cl), electrospray ionisation (ESI), fast atom bombardment (FAB), matrix-associated laser desorption ionisation (MALDI), inductively coupled plasma-mass spectrmetry (ICP-MS, cf and ), etc]... [Pg.2]

The reactivity of NMP towards OH radicals was studied in the aqueous phase, under tropospheric conditions. The kinetic results show that the OH oxidation of NMP is fast compared to that of other WSOC, and thus should induce modifications of the composition of water droplets, due to the reaction products formed. A new experimental technique was developed to study the aqueous phase OH oxidation of NMP. A mass spectrometer was coupled to an aqueous phase simulation chamber, thus providing an on-line analysis of the solution. The mass spectrometer was equipped with an electrospray ionisation (ESI) unit and a triple quadrupole, which allowed ESI-MS, ESI-MS, and ESI-MS-MS analysis. The results proved that this experimental technique is highly promising, as it allowed us to detect the formation of 66 reaction products, of which 24 were positively identified. Based on the results obtained, a chemical mechanism has been suggested for the OH oxidation of NMP in the aqueous phase. The developed equipment can be used to study other molecules and other reactions of atmospheric interest. [Pg.95]

Electrospray ionisation (ESI) is a technique that takes place at atmospheric pressure and is considered to be a soft ionisation process. It is very useful for liquids. Unlike hard processes, the molecule is not normally fragmented and so the resulting mass spectrum is much simpler, the principal peak of which will be the pseudo-molecular ion, i.e. a pro-tonated or sodiated peak. It is therefore much easier to decipher the molecular weight of a compound from an ESI source but there is less structural information given about the molecule, if any. [Pg.39]

Much effort has been invested in integrating mass spectrometry with on-chip CE. The flow rates typically used (nL to p,L/min) are very suitable for electrospray ionisation (ESI) prior to MS. However, the buffers used in CE tend not to be compatible with ESI and there is also a need to decouple the two electric fields (one for the electrophoretic separation, one for the electrospray). One method that has been used for interfacing electrospray with chips is to bond electrospray nozzles/needles to the outlet of the microchannel. Electrospray tips can also be incorporated onto the chip as part of the fabrication process. Electrospray detection following separation by CE has worked well for proteins, carbohydrates and many other compounds. [Pg.270]

Potentiometric and refractive index detection are not affected by volume but are relatively insensitive in the nanolitre to picolitre range compared to amperometric detection (micro surface area) and fluorimetric detection (micro amount of material). At 1 pL, limits of detection are similar for potentiometry, amperometry and fluorescence. On-chip LC is very compatible with mass spectrometry due to the low volumes and flow rates required. Battery-operated ion trap MS has been reported but miniaturisation of MS offers no sensitivity or selectivity advantages. Electrospray ionisation (ESI) has been successfully integrated into a chip format allowing for many ESI nozzles on one chip. Arrays make pattern recognition possible. [Pg.272]


See other pages where Electrospray Ionisation ESI is mentioned: [Pg.2]    [Pg.378]    [Pg.379]    [Pg.100]    [Pg.109]    [Pg.261]    [Pg.414]    [Pg.458]    [Pg.25]    [Pg.899]    [Pg.515]    [Pg.12]    [Pg.283]    [Pg.317]    [Pg.264]    [Pg.625]    [Pg.219]    [Pg.88]    [Pg.162]    [Pg.869]    [Pg.114]    [Pg.121]    [Pg.477]   


SEARCH



ESI

Electrospray ionisation

Electrospray ionisation mass spectrometry ESI-MS)

Ionisation

Ionised

© 2024 chempedia.info