Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophoretic mobility, electrically

The dimensionless retention parameter X of all FFF techniques, if operated on an absolute basis, is a function of the molecular characteristics of the compounds separated. These include the size of macromolecules and particles, molar mass, diffusion coefficient, thermal diffusion coefficient, electrophoretic mobility, electrical charge, and density (see Table 1, Sect. 1.4.1.) reflecting the wide variablity of the applicable forces [77]. For detailed theoretical descriptions see Sects. 1.4.1. and 2. For the majority of operation modes, X is influenced by the size of the retained macromolecules or particles, and FFF can be used to determine absolute particle sizes and their distributions. For an overview, the accessible quantities for the three main FFF techniques are given (for the analytical expressions see Table l,Sect. 1.4.1) ... [Pg.81]

Rowell and co-workers [62-64] have developed an electrophoretic fingerprint to uniquely characterize the properties of charged colloidal particles. They present contour diagrams of the electrophoretic mobility as a function of the suspension pH and specific conductance, pX. These fingerprints illustrate anomalies and specific characteristics of the charged colloidal surface. A more sophisticated electroacoustic measurement provides the particle size distribution and potential in a polydisperse suspension. Not limited to dilute suspensions, in this experiment, one characterizes the sonic waves generated by the motion of particles in an alternating electric field. O Brien and co-workers have an excellent review of this technique [65]. [Pg.185]

Electrophoretic Mobility The velocity with which a solute moves in response to the applied electric field is called its electrophoretic velocity, Vepi it is defined as... [Pg.598]

Electroosmotic Mobility When an electric field is applied to a capillary filled with an aqueous buffer, we expect the buffer s ions to migrate in response to their electrophoretic mobility. Because the solvent, H2O, is neutral, we might reasonably expect it to remain stationary. What is observed under normal conditions, however, is that the buffer solution moves toward the cathode. This phenomenon is called the electroosmotic flow. [Pg.598]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

In the presence of a buffer with constant composition across the electrophoretic chamber, the angle of deflection (0) of the solute in the electric field is dependent upon the intrinsic electrophoretic mobility of the solute (p. ), the linear velocity of the buffer (v) and the current through the chamber (I) and can be described as [17] ... [Pg.293]

Overbeek and Booth [284] have extended the Henry model to include the effects of double-layer distortion by the relaxation effect. Since the double-layer charge is opposite to the particle charge, the fluid in the layer tends to move in the direction opposite to the particle. This distorts the symmetry of the flow and concentration profiles around the particle. Diffusion and electrical conductance tend to restore this symmetry however, it takes time for this to occur. This is known as the relaxation effect. The relaxation effect is not significant for zeta-potentials of less than 25 mV i.e., the Overbeek and Booth equations reduce to the Henry equation for zeta-potentials less than 25 mV [284]. For an electrophoretic mobility of approximately 10 X 10 " cm A -sec, the corresponding zeta potential is 20 mV at 25°C. Mobilities of up to 20 X 10 " cmW-s, i.e., zeta-potentials of 40 mV, are not uncommon for proteins at temperatures of 20-30°C, and thus relaxation may be important for some proteins. [Pg.587]

The standard Rodbard-Ogston-Morris-Killander [326,327] model of electrophoresis which assumes that u alua = D nlDa is obtained only for special circumstances. See also Locke and Trinh [219] for further discussion of this relationship. With low electric fields the effective mobility equals the volume fraction. However, the dispersion coefficient reduces to the effective diffusion coefficient, as determined by Ryan et al. [337], which reduces to the volume fraction at low gel concentration but is not, in general, equal to the porosity for high gel concentrations. If no electrophoresis occurs, i.e., and Mp equal zero, the results reduce to the analysis of Nozad [264]. If the electrophoretic mobility is assumed to be much larger than the diffusion coefficients, the results reduce to that given by Locke and Carbonell [218]. [Pg.599]

The electrophoretic mobilities of flexible macromolecnles (e.g., DNA, oligonucleotides, and other polymers) in gel media have also been extensively stndied by a nnm-ber of methods, including Monte Carlo simnlations [159,165,208,357,358,361,362,447]. In general, the mobility is expected to vary with the length of the polymer to the -1 power (p N y, however, there are complicating effects of the applied electric field as well as the... [Pg.601]

The velocity of migration over the applied electric field is called the electrophoretic mobility (pe) ... [Pg.387]

Electrophoresis occurs in electrolyte solutions, where a competition of two forces, the electric force Fe and the frictional force Ff, are in equilibrium. The relationship of the two forces determines the electrophoretic mobility of the compounds ... [Pg.387]

Tinland, B., Pernodet, N., and Weill, G., Field and pore size dependence of the electrophoretic mobility of DNA A combination of fluorescence recovery after photobleaching and electric birefringence measurements, Electrophoresis, 17, 1046, 1996. [Pg.436]

If the electric field E is applied to a system of colloidal particles in a closed cuvette where no streaming of the liquid can occur, the particles will move with velocity v. This phenomenon is termed electrophoresis. The force acting on a spherical colloidal particle with radius r in the electric field E is 4jrerE02 (for simplicity, the potential in the diffuse electric layer is identified with the electrokinetic potential). The resistance of the medium is given by the Stokes equation (2.6.2) and equals 6jtr]r. At a steady state of motion these two forces are equal and, to a first approximation, the electrophoretic mobility v/E is... [Pg.253]

Log k appears to correlate with log P for standards between log P —0.5 to 5.0. One limitation of this method is that solutes must be electrically neutral at the pH of the buffer solution because electrophoretic mobility of the charged solute leads to migration times outside the range of Tm and TEof- Basic samples are therefore run at pH 10, and acidic samples at pH 3, thus ensuring that most weak acids and bases will be in their neutral form. This method has been used in a preclinical discovery environment with a throughput of 100 samples per week [24]. [Pg.29]

A second possibility is that the Au particles scavenge electrons from the reaction electrodes, walls and solvent. This is the explanation we favor at the present time since we have been able to effect changes in electrophoretic mobilities by supplying electrical potential to the colloid solution as the particles form,( l ) and the fact that such charging has been reported before, for example with oil droplets in water.(43)... [Pg.258]

Influence of the Surface Concentration of BSA. Compared to the corrected moving boundary electrophoretic mobility of BSA in solution, the mobility of BSA adsorbed onto glass is considerably faster at all ionic strengths at 1.96 pg/cm2 and somewhat faster at lower ionic strengths 1.38 pg/cm2. However, at lower adsorption densities (1.05 and 0.64 pg/cm2), the adsorbed BSA moves more slowly in the applied electric field than BSA in moving boundary electrophoresis under otherwise identical conditions, and at the lowest surface adsorption (0.64 pg/cm2) the mobility of the adsorbed BSA are even somewhat slower than in cellulose acetate gel at all conditions of ionic strength investigated. [Pg.176]

In order to influence a migration it is obvious that one can alter the charge of the compounds, the viscosity of the medium and the dynamic radius of the compounds. According to Eq. 17.5, the electrophoretic mobility is the proportionality factor in the linear relationship of the migration velocity and the electric field strength... [Pg.582]

The migration in CE is obviously influenced by both the effective and the electroosmotic mobility. Therefore, the proportionality factor in the relationship of the migration velocity and the electric field strength in such a case is called the apparent electrophoretic mobility (/iapp) and the migration velocity the apparent migration velocity (vapp). The /iapp is equal to the sum of /migration velocity is expressed as... [Pg.587]


See other pages where Electrophoretic mobility, electrically is mentioned: [Pg.191]    [Pg.2674]    [Pg.598]    [Pg.598]    [Pg.603]    [Pg.772]    [Pg.61]    [Pg.252]    [Pg.37]    [Pg.560]    [Pg.585]    [Pg.601]    [Pg.603]    [Pg.592]    [Pg.260]    [Pg.403]    [Pg.273]    [Pg.281]    [Pg.252]    [Pg.85]    [Pg.169]    [Pg.181]    [Pg.182]    [Pg.430]    [Pg.430]    [Pg.27]    [Pg.32]    [Pg.174]    [Pg.174]    [Pg.582]    [Pg.592]   


SEARCH



Electric mobility

Electrophoretic mobility

© 2024 chempedia.info