Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Henry-equation

Nomograph defined. This method assumes the application of the Clausius-Clapeyron equation, Henry s law, and... [Pg.366]

TABLE 4.1.1.29.3 Reported Henry s law constants and octanol-and temperature dependence equations Henry s law constant air partition coefficients of pyrene at various temperatures log Kqa ... [Pg.758]

The enhancement factor approach, like the utilization factor approach, permits accounting for gas phase resistance. Again the gas phase flux equation, Henry s law, the liquid phase flux equation, and the K uality of fluxes through both phases can be combined to eliminate with the result that... [Pg.313]

Henry s constant is a measure of the escaping tendency of a solvent from a very dilute solution. It is given by a simple equation Henry s constant = p x ( t where p is the pressure of pure solvent at the solution temperature and ( ) is the solvent concentration in the liquid phase. A high value of Henry s constant indicates that solvent can be easily stripped from dilute water solution. It can also be used to calculate TLV levels by knowing concentration of a solvent in a solution according to the equation TLV (in ppm) = [18 H (concentration of solvent in water)]/ molecular weight of solvent. [Pg.64]

The solubility of common gases in hydrocarbon liquids is determined to meet requirements of aerospace industry. This test method is based on the Clausius-Clapeyron equation, Henry s law, and the perfect gas law. The results are important in the lubrication of gas compressors where dissolved gas may cause erosion due to cavitation. In fuels, dissolved gases may cause interruption of fuel supply and foaming in tank. The liquid density is determined experimentally. Using this density, the Ostwald coefficient is taken from a chart and used for e calculation of the Bunsen coefficient (solubility of gas). The solubility of the gas or mixture of gases and Henry s law constant are also calculated. [Pg.1066]

Henry s constant is the standard-state fugacity for any component i whose activity coefficient is normalised by Equation (14). ... [Pg.19]

In a binary liquid solution containing one noncondensable and one condensable component, it is customary to refer to the first as the solute and to the second as the solvent. Equation (13) is used for the normalization of the solvent s activity coefficient but Equation (14) is used for the solute. Since the normalizations for the two components are not the same, they are said to follow the unsymmetric convention. The standard-state fugacity of the solvent is the fugacity of the pure liquid. The standard-state fugacity of the solute is Henry s constant. [Pg.19]

Chapter 3 discusses calculation of fugacity coefficient < ). Chapter 4 discusses calculation of adjusted activity coefficient Y fugacity of the pure liquid f9 [Equation (24)], and Henry s constant H. [Pg.24]

Table 3 shows results obtained from a five-component, isothermal flash calculation. In this system there are two condensable components (acetone and benzene) and three noncondensable components (hydrogen, carbon monoxide, and methane). Henry s constants for each of the noncondensables were obtained from Equations (18-22) the simplifying assumption for dilute solutions [Equation (17)] was also used for each of the noncondensables. Activity coefficients for both condensable components were calculated with the UNIQUAC equation. For that calculation, all liquid-phase composition variables are on a solute-free basis the only required binary parameters are those for the acetone-benzene system. While no experimental data are available for comparison, the calculated results are probably reliable because all simplifying assumptions are reasonable the... [Pg.61]

The ideal gas law equation of state thus leads to a linear or Henry s law isotherm. A natural modification adds a co-area term ... [Pg.623]

We conclude with the matter of adsorbate-adsorbate interactions these give rise to deviations from Henry s law behavior. These may be expressed in the form of a virial equation, much as is done for imperfect gases. Following Steele [8], one can write... [Pg.638]

The Freundlich equation is defective as a model because of the physically unrealistic/((2) consequences of this are that Henry s law is not approached at low P, nor is a limiting adsorption reached at high P. These difficulties can be patched by supposing that... [Pg.699]

Substances at high dilution, e.g. a gas at low pressure or a solute in dilute solution, show simple behaviour. The ideal-gas law and Henry s law for dilute solutions antedate the development of the fonualism of classical themiodynamics. Earlier sections in this article have shown how these experimental laws lead to simple dieniiodynamic equations, but these results are added to therniodynaniics they are not part of the fonualism. Simple molecular theories, even if they are not always recognized as statistical mechanics, e.g. the kinetic theory of gases , make the experimental results seem trivially obvious. [Pg.374]

If tire diffusion coefficient is independent of tire concentration, equation (C2.1.22) reduces to tire usual fonn of Pick s second law. Analytical solutions to diffusion equations for several types of boundary conditions have been derived [M]- In tlie particular situation of a steady state, tire flux is constant. Using Henry s law (c = kp) to relate tire concentration on both sides of tire membrane to tire partial pressure, tire constant flux can be written as... [Pg.2536]

In the present study we try to obtain the isotherm equation in the form of a sum of the three terms Langmuir s, Henry s and multilayer adsorption, because it is the most convenient and is easily physically interpreted but, using more a realistic assumption. Namely, we take the partition functions as in the case of the isotherm of d Arcy and Watt [20], but assume that the value of V for the multilayer adsorption appearing in the (5) is equal to the sum of the number of adsorbed water molecules on the Langmuir s and Henry s sites ... [Pg.120]

The results of a comparison between values of n estimated by the DRK and BET methods present a con. used picture. In a number of investigations linear DRK plots have been obtained over restricted ranges of the isotherm, and in some cases reasonable agreement has been reported between the DRK and BET values. Kiselev and his co-workers have pointed out, however, that since the DR and the DRK equations do not reduce to Henry s Law n = const x p) as n - 0, they are not readily susceptible of statistical-thermodynamic treatment. Moreover, it is not easy to see how exactly the same form of equation can apply to two quite diverse processes involving entirely diiferent mechanisms. We are obliged to conclude that the significance of the DRK plot is obscure, and its validity for surface area estimation very doubtful. [Pg.228]

Equation 6 shows that the adsorption of component 1 at a partial pressureis reduced in the presence of component 2 as a result of competition for the available surface sites. There ate only a few systems for which this expression (with 5 1 = q 2 = 5 ) provides an accurate quantitative representation, but it provides useful quaUtative or semiquantitative guidance for many systems. In particular, it has the correct asymptotic behavior and provides expHcit recognition of the effect of competitive adsorption. For example, if component 2 is either strongly adsorbed or present at much higher concentration than component 1, the isotherm for component 1 is reduced to a simple linear form in which the apparent Henry s law constant depends onp. ... [Pg.256]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

Permeability P, can be expressed as the product of two terms. One, the diffusion coefficient, reflects the mobility of the individual molecules in the membrane material the other, the Henry s law sorption coefficient, reflects the number of molecules dissolved in the membrane material. Thus equation 9 can also be written as equation 10. [Pg.83]

Ideal gas properties and other useful thermal properties of propylene are reported iu Table 2. Experimental solubiUty data may be found iu References 18 and 19. Extensive data on propylene solubiUty iu water are available (20). Vapor—Hquid—equiUbrium (VLE) data for propylene are given iu References 21—35 and correlations of VLE data are discussed iu References 36—42. Henry s law constants are given iu References 43—46. Equations for the transport properties of propylene are given iu Table 3. [Pg.123]

The diffusion coefficient, sometimes called the diffusivity, is the kinetic term that describes the speed of movement. The solubiHty coefficient, which should not be called the solubiHty, is the thermodynamic term that describes the amount of permeant that will dissolve ia the polymer. The solubiHty coefficient is a reciprocal Henry s Law coefficient as shown ia equation 3. [Pg.486]

Miscellaneous Generalized Correlations. Generalized charts and corresponding states equations have been pubhshed for many other properties in addition to those presented. Most produce accurate results over a wide range of conditions. Some of these properties include (/) transport properties (64,91) (2) second virial coefficients (80,92) (J) third virial coefficients (72) (4) Hquid mixture activity coefficients (93) (5) Henry s constant (94) and 6) diffusivity (95). [Pg.242]


See other pages where Henry-equation is mentioned: [Pg.229]    [Pg.859]    [Pg.7]    [Pg.229]    [Pg.859]    [Pg.7]    [Pg.61]    [Pg.2674]    [Pg.120]    [Pg.44]    [Pg.255]    [Pg.256]    [Pg.443]    [Pg.500]    [Pg.265]    [Pg.158]    [Pg.237]    [Pg.238]    [Pg.537]    [Pg.1259]   
See also in sourсe #XX -- [ Pg.548 ]

See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Henri-Michaelis-Menten equation

Henri-Michaelis-Menten equation, derivation

Henry s equation

Henry’s law, equation

Kinetic Henri equation

Multicomponent adsorption Henry equation

Zeta potential Henry equation

© 2024 chempedia.info