Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron probe microanalysis for

Cooper, G.I., Cox, G.A. and Perutz, R.N. (1993). Infra-red microspectroscopy as a complimentary technique to electron-probe microanalysis for the... [Pg.187]

Table 3.5. Data of electron probe microanalysis for the Zn-bordering intermetallic layer of the Ni-Zn reaction couple annealed at 400°C for 7200 s (2 h)... Table 3.5. Data of electron probe microanalysis for the Zn-bordering intermetallic layer of the Ni-Zn reaction couple annealed at 400°C for 7200 s (2 h)...
The distribution of the cations in the spores has been investigated by the use of high resolution electron probe microanalysis for spores from B. megaterium and B. cereus. This shows that nearly all the Ca, Mg and Mn " is concentrated in the core region, while there is a high concentration of silicon in the cortex/coat layer. ESR spectra shows the Mn signal in the former case to be virtually identical at 77 and 298 K, suggesting it is present in a crystalline lattice. Such a lattice would be present in a Ca /Mn complex of dipicolinic acid. [Pg.572]

The complex of the following destmctive and nondestmctive analytical methods was used for studying the composition of sponges inductively coupled plasma mass-spectrometry (ICP-MS), X-ray fluorescence (XRF), electron probe microanalysis (EPMA), and atomic absorption spectrometry (AAS). Techniques of sample preparation were developed for each method and their metrological characteristics were defined. Relative standard deviations for all the elements did not exceed 0.25 within detection limit. The accuracy of techniques elaborated was checked with the method of additions and control methods of analysis. [Pg.223]

Electron Probe Microanalysis, EPMA, as performed in an electron microprobe combines EDS and WDX to give quantitative compositional analysis in the reflection mode from solid surfaces together with the morphological imaging of SEM. The spatial resolution is restricted by the interaction volume below the surface, varying from about 0.2 pm to 5 pm. Flat samples are needed for the best quantitative accuracy. Compositional mapping over a 100 x 100 micron area can be done in 15 minutes for major components Z> 11), several hours for minor components, and about 10 hours for trace elements. [Pg.119]

Quantitative Electron-Probe Microanalysis. (V. D. Scott and G. Love, eds.) John Wiley Sons, New York, 1983. Taken from a short course on the electron microprobe for scientists working in the field. A thorough discussion of EDS and WDS is given, including experimental conditions and specimen requirements. The ZAF correction factors are treated extensively, and statistics, computer programs and Monte Carlo methods are explained in detail. Generally, a very useftd book. [Pg.133]

The keystone of practical quantitative electron probe microanalysis is Castaing s first approximation, which relates the concentration for a constituent in the unknown to the concentration in a standard in terms of the ratio of X-ray intensities generated in the target ... [Pg.183]

Because X-ray counting rates are relatively low, it typically requires 100 seconds or more to accumulate adequate counting statistics for a quantitative analysis. As a result, the usual strategy in applying electron probe microanalysis is to make quantitative measurements at a limited collection of points. Specific analysis locations are selected with the aid of a rapid imaging technique, such as an SEM image prepared with backscattered electrons, which are sensitive to compositional variations, or with the associated optical microscope. [Pg.187]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

Additional information concerning the mechanisms of solid—solid interactions has been obtained by many diverse experimental approaches, as the following examples testify adsorptive and catalytic properties of the reactant mixture [1,111], reflectance spectroscopy [420], NMR [421], EPR [347], electromotive force determinations [421], tracer experiments [422], and doping effects [423], This list cannot be comprehensive. Electron probe microanalysis has also been used as an analytical (rather than a kinetic) tool [422,424] for the determination of distributions of elements within the reactant mixture. Infrared analyses have been used [425] for the investigation of the solid state reactions between NH3 and S02 at low temperatures in the presence and in the absence of water. [Pg.39]

Van Zyl, J., Forrest, Q.G., Hocking, C. Pallaghy, C.K. (1976). Freeze-substitution of plant and animal tissue for the localisation of water-soluble compounds by electron probe microanalysis. Micron, 7, 213-24. [Pg.248]

A number of techniques have been employed that are capable of giving information about amorphous phases. These include infrared spectroscopy, especially the use of the attenuated total reflection (ATR) or Fourier transform (FT) techniques. They also include electron probe microanalysis, scanning electron microscopy, and nuclear magnetic resonance (NMR) spectroscopy. Nor are wet chemical methods to be neglected for they, too, form part of the armoury of methods that have been used to elucidate the chemistry and microstructure of these materials. [Pg.359]

Although conventional electron-probe microanalysis appears to be unsuitable for analysis of the exposed surface layer of atoms in an alloy catalyst, recent developments have shown that X-ray emission analysis can still be used for this purpose (89, 90). By bombarding the surface with high energy electrons at grazing incidence, characteristic Ka radiation from monolayer quantities of both carbon and oxygen on an iron surface was observed. Simultaneously, information about the structure of the surface layer was obtained from the electron diffraction pattern. [Pg.144]

Furthermore, under controlled bombardment conditions, peak intensity measurements may be used for a quantitative determination of the appropriate element. Measurements of the characteristics and intensity of primary X-rays produced by electron bombardment constitute the basis of electron probe microanalysis. Figure 8.33 illustrates the complex nature of the reactions initiated by the impact of an electron beam on a target. As a consequence of this complexity it has proved extraordinarily difficult to make fully quantitative measurements, and it is only recently with the widespread application of dedicated computers and sophisticated software that this has become possible. [Pg.337]

Electron probe microanalysis functions by direct examination of the primary X-rays produced when the specimen is used as a target for an electron beam. Focused electron beams allow a spot analysis of a 1 pm3 section of the specimen. One current development employs the electron beam within a scanning electron microscope to provide both a visual picture of the surface of the sample and an elemental analysis of the section being viewed. Spectra obtained from primary X-rays always have the characteristic emission peaks superimposed on a continuum of background radiation (Figure 8.32). This feature limits the precision, sensitivity and resolution of electron probe microanalysis. [Pg.345]

Rarely will it be possible to draw conclusions directly from the raw data of analytical measurements and it is usual for some refinement of the data to be carried out. In its simplest form this could merely comprise background corrections, but it is often much more complex, requiring corrections for a number of factors as in mass spectrometry, X-ray fluorescence and electron probe microanalysis. More complex routines made available by computers include spectrum smoothing, stripping one component from a spectrum or making peak area measurements from chromatograms. [Pg.525]

As indicated in Fig. 7.2, X-rays are among the by-products in an electron microscope. Already at the beginning of this century, people knew that matter emits X-rays when it is bombarded with electrons. The explanation of the phenomenon came with the development of quantum mechanics. Nowadays, it is the basis for determining composition on the submicron scale and, with still increasing spatial resolution, is used in the technique referred to as Electron Microprobe Analysis (EMA), Electron Probe Microanalysis (EPMA) or Energy Dispersive Analysis of X-rays (EDAX, EDX) [21]. [Pg.189]

Of the three commonly used X-ray detectors—(1) Geiger counter, (2) scintillation counter, and (3) proportional counter—the latter is used most frequently for electron-probe microanalysis. In the wavelengths from 1 to 10 A, sealed proportional counters may be used. For longer-waveleiigtli analysis—in the range from 10 to 93 A—the thinnest possible detector window is required to limit spectral attenuation. Nitrocellulose windows have proved successful. Nondispersive detection systems using cooled Li-dnfted Si are also applicable. [Pg.1760]


See other pages where Electron probe microanalysis for is mentioned: [Pg.144]    [Pg.572]    [Pg.144]    [Pg.572]    [Pg.39]    [Pg.117]    [Pg.343]    [Pg.9]    [Pg.167]    [Pg.2]    [Pg.651]    [Pg.23]    [Pg.276]    [Pg.277]    [Pg.187]    [Pg.58]    [Pg.293]    [Pg.366]    [Pg.452]    [Pg.365]    [Pg.132]    [Pg.422]    [Pg.623]    [Pg.450]    [Pg.105]    [Pg.293]    [Pg.35]    [Pg.264]    [Pg.151]   


SEARCH



Electron probes

Microanalysis

© 2024 chempedia.info