Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron microscopy - oxides

Figure A3.14.il. Spiral waves imaged by photoelectron electron microscopy for the oxidation of CO by O2 on a Pt(l 10) single crystal under UHV conditions. (Reprinted with pennission from [35], The American Institute of Physics.)... Figure A3.14.il. Spiral waves imaged by photoelectron electron microscopy for the oxidation of CO by O2 on a Pt(l 10) single crystal under UHV conditions. (Reprinted with pennission from [35], The American Institute of Physics.)...
Comparison of specific surface of anatase and zinc oxide determined by electron microscopy A ) and by nitrogen adsorption A )... [Pg.65]

Occasionally, especially in the developmental phase of catalyst research, it is necessary to determine the oxidation state, exact location, and dispersion of various elements in the catalyst. Eor these studies, either transmission electron microscopy (TEM) or scanning electron microscopy (SEM) combined with various high vacuum x-ray, electron, and ion spectroscopies are used routinely. [Pg.196]

Oxide-supported metals constitute one of the most important classes of heterogeneous catalysts, and for this reason they have been investigated by many techniques adsorption isotherms, IR of chemisorbed molecules, electron microscopy, EXAFS, etc. Flowever, the fact that they have been studied by so many methods proves that no one technique is totally satisfactory. [Pg.12]

A special mention is in order of high-resolution electron microscopy (HREM), a variant that permits columns of atoms normal to the specimen surface to be imaged the resolution is better than an atomic diameter, but the nature of the image is not safely interpretable without the use of computer simulation of images to check whether the assumed interpretation matches what is actually seen. Solid-state chemists studying complex, non-stoichiometric oxides found this image simulation approach essential for their work. The technique has proved immensely powerful, especially with respect to the many types of defect that are found in microstructures. [Pg.221]

Multi-walled CNTs (MWCNTs) are produced by arc discharge between graphite electrodes but other carbonaceous materials are always formed simultaneously. The main by-product, nanoparticles, can be removed utilizing the difference in oxidation reaction rates between CNTs and nanoparticles [9]. Then, it was reported that CNTs can be aligned by dispersion in a polymer resin matrix [10]. However, the parameters of CNTs are uncontrollable, such as the diameter, length, chirality and so on, at present. Furthermore, although the CNTs are observed like cylinders by transmission electron microscopy (TEM), some reports have pointed out the possibility of non-cylindrical structures and the existence of defects [11-14]. [Pg.76]

Investigations based on equation (a) are indirect. Direct structural studies using diffraction techniques (X-ray or neutron), or electron microscopy, while they cannot detect the low concentrations of defects present in NiO or CoO are indispensible to the study of grossly non-stoichiometric oxides like FeO, TiOj, WOj etc., and particularly electron microscopes with a point-to-point resolution of about 0.2 nm are widely used. The first direct observation of a point defect (actually a complex of two interstitial metal atoms, and two oxygen atoms in Nb,2029) was made" using electron microscopy. [Pg.252]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

Anodic oxide formation Lakhiani and Shreir have studied the anodic oxidation of niobium in various electrolytes, and have observed that temperature and current density have a marked effect on the anodising characteristics. The plateau on the voltage/time curve has been shown by electron microscopy to correspond with the crystallisation of the oxide and rupture of the previously formed oxide. It would appear that this is a further example of field recrystallisation —a phenomenon which has been observed previously during anodisation of tantalum" . No significant data on the galvanic behaviour of niobium are available however, its behaviour can be expected to be similar to tantalum. [Pg.858]

S. Kelling, S. Cerasari, H.H. Rotermund, G. Ertl, and D.A. King, A photoemission electron microscopy (PEEM) study of the effect of surface acoustic waves on catalytic CO oxidation over Pt(110), Chem. Phys. Lett. 293, 325-330 (1998). [Pg.277]

While the fluid mosaic model of membrane stmcture has stood up well to detailed scrutiny, additional features of membrane structure and function are constantly emerging. Two structures of particular current interest, located in surface membranes, are tipid rafts and caveolae. The former are dynamic areas of the exo-plasmic leaflet of the lipid bilayer enriched in cholesterol and sphingolipids they are involved in signal transduction and possibly other processes. Caveolae may derive from lipid rafts. Many if not all of them contain the protein caveolin-1, which may be involved in their formation from rafts. Caveolae are observable by electron microscopy as flask-shaped indentations of the cell membrane. Proteins detected in caveolae include various components of the signal-transduction system (eg, the insutin receptor and some G proteins), the folate receptor, and endothetial nitric oxide synthase (eNOS). Caveolae and lipid rafts are active areas of research, and ideas concerning them and their possible roles in various diseases are rapidly evolving. [Pg.422]

Transmission electron microscopy (TEM) The dispersion of cobalt oxide species on the titania supports were determined using a JEOL-TEM 200CX transmission electron spectroscopy operated at 100 kV with 100k magnification. [Pg.286]

The etch rates were measured by a surface profiler and field emission scatming electron microscopy (FESEM), and the etch profile were observed by FESEM. In this study, a C /Ar gas chemistry was chosen to obtain high etch selectivity of Si film to niobium oxide mask since CI2 gas was known to be a good etch gas for Si films. The etch rate, etch selectivity and etch profile of niobium oxide nanopillars and Si films were explored by varying the CI2 concentration, coil RF power and dc bias voltage to substrate. [Pg.362]

In this paper, TiCU was oxidized in the flow reactor at various temperature and gas flow rate. The wall scales were characterized by scan electron microscopy and X-ray diffraction. The effects of reactor wall surface state, radial growth of scale layer and reactor axial temperature distribution on scaling formation were discussed. At the same time, the mechanism of scaling on the reactor wall was explored furthermore. [Pg.417]

The feasibility of synthesizing oxovanadium phthalocyanine (VOPc) from vanadium oxide, dicyanobenzene, and ethylene ycol using the microwave synthesis was investigated by comparing reaction temperatures under the microwave irradiations with the same factors of conventional synthesis. The efficiency of microwave synthesis over the conventional synthesis was illustrated by the yield of crude VOPc. Polymorph of VOPc was obtained ttough the acid-treatment and recrystallization step. The VOPos synthesized in various conditions were characterized hy the means of an X-ray dif actometry (XRD), a scanning electron microscopy (SEM), and a transmission electron Microscopy (TEM). [Pg.801]

In conclusion, XPS is among the most frequently used techniques in characterizing catalysts. It readily provides the composition of the surface region and also reveals information on both the oxidation state of metals and the electronegativity of any ligands. XPS can also provide insight into the dispersion of particles over supports, vrhich is particularly useful if the more common techniques employed for this purpose, such as electron microscopy or hydrogen chemisorption, can not discriminate between support and active phase. [Pg.139]

Transmission electron microscopy is one of the techniques most often used for the characterization of catalysts. In general, detection of supported particles is possible, provided that there is sufficient contrast between particles and support - a limitation that may impede applications of TEM on well-dispersed supported oxides. The determination of particle sizes or of distributions therein is now a routine matter, although it rests on the assumption that the size of the imaged particle is truly proportional to the size of the actual particle and that the detection probability is the same for all particles, independent of their dimensions. [Pg.145]

Suppose you prepared an iron oxide catalyst supported on an alumina support. Your aim is to use the catalyst in the metallic form, but you want to keep the iron particles as small as possible, with a degree of reduction of at least 50%. Hence, you need to know the particle size of the iron oxide in the unreduced catalyst, as well as the size of the iron particles and their degree of reduction in the metallic state. Refer to Chapters 4 and 5 to devise a strategy to obtain this information. (Unfortunately for you, it appears that electron microscopy and X-ray diffraction do not provide useful data on the unreduced catalyst.)... [Pg.407]

The performance of a supported metal or metal sulfide catalyst depends on the details of its preparation and pretreatraent. For petroleum refining applications, these catalysts are activated by reduction and/or sulfidation of an oxide precursor. The amount of the catalytic component converted to the active ase cind the dispersion of the active component are important factors in determining the catalytic performance of these materials. This investigation examines the process of reduction and sulfidation on unsupported 00 04 and silica-supported CO3O4 catalysts with different C03O4 dispersions. The C03O4 particle sizes were determined with electron microscopy. X-ray diffraction (XRD), emd... [Pg.144]

Analytical electron microscopy permits structural and chemical analyses of catalyst areas nearly 1000 times smaller than those studied by conventional bulk analysis techniques. Quantitative x-ray analyses of bismuth molybdates are shown from lOnm diameter regions to better than 5% relative accuracy for the elements 61 and Mo. Digital x-ray images show qualitative 2-dimensional distributions of elements with a lateral spatial resolution of lOnm in supported Pd catalysts and ZSM-5 zeolites. Fine structure in CuLj 2 edges from electron energy loss spectroscopy indicate d>ether the copper is in the form of Cu metal or Cu oxide. These techniques should prove to be of great utility for the analysis of active phases, promoters, and poisons. [Pg.361]


See other pages where Electron microscopy - oxides is mentioned: [Pg.264]    [Pg.155]    [Pg.264]    [Pg.155]    [Pg.65]    [Pg.212]    [Pg.140]    [Pg.56]    [Pg.36]    [Pg.48]    [Pg.539]    [Pg.315]    [Pg.299]    [Pg.67]    [Pg.12]    [Pg.183]    [Pg.520]    [Pg.275]    [Pg.282]    [Pg.690]    [Pg.731]    [Pg.85]    [Pg.603]    [Pg.532]    [Pg.541]    [Pg.45]    [Pg.273]    [Pg.417]    [Pg.722]    [Pg.316]    [Pg.566]   


SEARCH



Electron Oxidants

Electronic oxides

Electrons oxidation

Oxidation microscopy

© 2024 chempedia.info