Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron mass spectrometry

Wang, C. et al., Plasma phospholipid metabolic profiling and biomarkers for type 2 diabetes mellitus based on high-performance liquid chromatography/electron mass spectrometry and multivariate statistical analysis, Anal. Chem., 77(13), 4108, 2005. [Pg.326]

Ham BM (2008) Even electron mass spectrometry with biomolecule applications, 1st edn. WUey Interscience, Hoboken. ISBN 978-0-470-11802-3 Hancock P, Leandro CC, Keely BJ, FusseU RJ (2007) Targeted and non-targeted pesticide screening in food using elevated resolution GC/TOF/MS. Waters Application Note 2007, 720002027EN... [Pg.162]

The species produced through ionization of an electron from a ir-orbital (such as from a C-H or a C-C bond of an alkane in mass spectrometry) cannot be represented at all by a connection table, yet the RAMSES notation can account for it as shown in Figure 2-59. [Pg.68]

Ultraviolet visible (UV VIS) spectroscopy, which probes the electron distribution especially m molecules that have conjugated n electron systems Mass spectrometry (MS), which gives the molecular weight and formula both of the molecule itself and various structural units within it... [Pg.519]

Mass spectrometry is not based on absorption of electromagnetic radia tion but monitors what happens when a substance is ionized by collision with a high energy electron... [Pg.575]

Section 13 22 Mass spectrometry exploits the information obtained when a molecule is ionized by electron impact and then dissociates to smaller fragments Pos itive ions are separated and detected according to their mass to charge (m/z) ratio By examining the fragments and by knowing how classes of molecules dissociate on electron impact one can deduce the structure of a compound Mass spectrometry is quite sensitive as little as 10 g of compound is sufficient for analysis... [Pg.577]

Molecular ion (Section 13 22) In mass spectrometry the species formed by loss of an electron from a molecule Molecular orbital theory (Section 2 4) Theory of chemical bonding in which electrons are assumed to occupy orbitals in molecules much as they occupy orbitals in atoms The molecular orbitals are descnbed as combinations of the or bitals of all of the atoms that make up the molecule Molecularity (Section 4 8) The number of species that react to gether in the same elementary step of a reaction mechanism... [Pg.1288]

For a limited range of substances, negative radical anions (M ) can be formed rather than positive ions (Equation 3.3). Negative radical anions can be produced in abundance by methods other than electron ionization. However, since most El mass spectrometry is concerned with positive ions, only they are discussed here. [Pg.13]

The mass of an electron is very small compared with the total mass of the molecule. Consequently, the relative molecular mass of a molecule (M,.) is almost the same as that of the derived molecular ion (M +). For practical purposes in mass spectrometry, = M/+, and is written, M +. [Pg.13]

A further important use of El mass spectrometry lies in measuring isotope ratios, which can be used in estimating the ages of artifacts, rocks, or fossils. Electron ionization affects the isotopes of any one element equally, so that the true isotope ratio is not distorted by the ionization step. Further information on isotopes can be found in Chapter 46. [Pg.16]

The positive column is a region in which atoms, electrons, and ions are all present together in similar numbers, and it is referred to as a plasma. Again, as with the corona discharge, in mass spectrometry, plasmas are usually operated in gases at or near atmospheric pressure. [Pg.34]

If a sample solution is introduced into the center of the plasma, the constituent molecules are bombarded by the energetic atoms, ions, electrons, and even photons from the plasma itself. Under these vigorous conditions, sample molecules are both ionized and fragmented repeatedly until only their constituent elemental atoms or ions survive. The ions are drawn off into a mass analyzer for measurement of abundances and mJz values. Plasma torches provide a powerful method for introducing and ionizing a wide range of sample types into a mass spectrometer (inductively coupled plasma mass spectrometry, ICP/MS). [Pg.87]

An AutoSpec-TOF mass spectrometer has a magnetic sector and an electron multiplier ion detector for carrying out one type of mass spectrometry plus a TOF analyzer with a microchannel plate multipoint ion collector for another type of mass spectrometry. Either analyzer can be used separately, or the two can be run in tandem (Figure 20.4). [Pg.154]

In modem mass spectrometry, ion collectors (detectors) are generally based on the electron multiplier and can be separated into two classes those that detect the arrival of all ions sequentially at a point (a single-point ion collector) and those that detect the arrival of all ions simultaneously (an array or multipoint collector). This chapter compares the uses of single- and multipoint ion collectors. For more detailed discussions of their construction and operation, see Chapter 28, Point Ion Collectors (Detectors), and Chapter 29, Array Collectors (Detectors). In some forms of mass spectrometry, other methods of ion detection can be used, as with ion cyclotron instmments, but these are not considered here. [Pg.211]

Metastable ions yield valuable information on fragmentation in mass spectrometry, providing insight into molecular structure. In electron ionization, metastable ions appear naturally along with the much more abundant normal ions. Abundances of metastable ions can be enhanced by collisionally induced decomposition. [Pg.229]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

Some of the target molecules gain so much excess internal energy in a short space of time that they lose an electron and become ions. These are the molecular cation-radicals found in mass spectrometry by the direct absorption of radiation. However, these initial ions may react with accompanying neutral molecules, as in chemical ionization, to produce protonated molecules. [Pg.384]

Standard El spectra are obtained with an electron energy of 70 eV (electrons accelerated through 70 V). For most compounds, it is easier to produce positive ions than negative ones, and most El mass spectrometry is concerned with positive ions. [Pg.385]

All three types of discharge involve the formation of ions as part of the process. For various reasons, most of the ions are positive. The ions can be examined by mass spectrometry. If small amounts of a sample substance are introduced into a corona or plasma or arc, ions are formed by the electrons present in the discharge or by collision with ions of the discharge gas. [Pg.388]

Mass spectral fragmentation patterns of alkyl and phenyl hydantoins have been investigated by means of labeling techniques (28—30), and similar studies have also been carried out for thiohydantoins (31,32). In all cases, breakdown of the hydantoin ring occurs by a-ftssion at C-4 with concomitant loss of carbon monoxide and an isocyanate molecule. In the case of aryl derivatives, the ease of formation of Ar—NCO is related to the electronic properties of the aryl ring substituents (33). Mass spectrometry has been used for identification of the phenylthiohydantoin derivatives formed from amino acids during peptide sequence determination by the Edman method (34). [Pg.250]

The main advantages of the ms/ms systems are related to the sensitivity and selectivity they provide. Two mass analyzers in tandem significantly enhance selectivity. Thus samples in very complex matrices can be characterized quickly with Htde or no sample clean-up. Direct introduction of samples such as coca leaves or urine into an ms or even a gc/lc/ms system requires a clean-up step that is not needed in tandem mass spectrometry (28,29). Adding the sensitivity of the electron multiplier to this type of selectivity makes ms/ms a powerhil analytical tool, indeed. It should be noted that introduction of very complex materials increases the frequency of ion source cleaning compared to single-stage instmments where sample clean-up is done first. [Pg.405]

Mass Spectrometry. As of 1996, ms characteristics of pyrazoles and derivatives had not been described in depth. The fate of unsubstituted pyrazole (23) in the mass spectrometer operated in the electron ionization mode may be depicted as follows ... [Pg.308]

Naiiow-line uv—vis spectia of free atoms, corresponding to transitions ia the outer electron shells, have long been employed for elemental analysis usiag both atomic absorption (AAS) and emission (AES) spectroscopy (159,160). Atomic spectroscopy is sensitive but destmctive, requiring vaporization and decomposition of the sample iato its constituent elements. Some of these techniques are compared, together with mass spectrometry, ia Table 4 (161,162). [Pg.317]


See other pages where Electron mass spectrometry is mentioned: [Pg.873]    [Pg.873]    [Pg.1828]    [Pg.1851]    [Pg.2390]    [Pg.2725]    [Pg.200]    [Pg.567]    [Pg.1282]    [Pg.7]    [Pg.29]    [Pg.44]    [Pg.61]    [Pg.87]    [Pg.136]    [Pg.160]    [Pg.195]    [Pg.336]    [Pg.337]    [Pg.376]    [Pg.478]    [Pg.265]    [Pg.418]    [Pg.1]    [Pg.85]   
See also in sourсe #XX -- [ Pg.664 ]

See also in sourсe #XX -- [ Pg.591 ]

See also in sourсe #XX -- [ Pg.557 , Pg.572 , Pg.581 ]




SEARCH



Chemical ionization mass spectrometry electron capture

Electron Impact Mass Spectrometry (EIMS)

Electron bombardment mass spectrometry

Electron capture dissociation tandem mass spectrometry

Electron capture dissociation tandem mass spectrometry using

Electron capture negative ion mass spectrometry

Electron impact ionization mass spectrometry

Electron impact mass spectrometry

Electron impact mass spectrometry characteristics

Electron impact mass spectrometry sugar derivatives

Electron impact/desorption mass spectrometry, structural studies

Electron ionisation mass spectrometry

Electron ionization mass spectrometry EI-MS)

Electron ionization mass spectrometry fragmentation

Electron mass

Electron spectrometry

Electron spray ionization mass spectrometry

Electron spray ionization mass spectrometry ESI-MS)

Electron-capture atmospheric mass spectrometry

Electron-impact (El) Secondary Neutral Mass Spectrometry (SNMS)

High-resolution electron impact mass spectrometry

Mass Spectrometry Electron multiplier

Mass spectrometry electron impact ionisation

Mass spectrometry electron ionisation mode

Mass spectrometry electron ionization

Mass spectrometry electron-induced dissociations

Mass spectrometry electronic spectrum

Mass spectrometry from electron ionization

Mass spectrometry pulse electron-beam

Mass spectrometry pulsed electron-beam

Mass, electronic

Pyrolysis-gas chromatography/electron impact mass spectrometry

© 2024 chempedia.info