Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron cyclotron resonance ion trap

A possibility to extend this set comes from the use of an Electron-Cyclotron-Resonance-Ion-Trap (ECRIT), which will be realized using the cyclotron trap itself [22]. Here, hydrogen-like electronic atoms will be produced to obtain narrow calibration lines independent of an accelerator s pion beam. The radiative widths of light elements with Z k. 15 are of the order of a few 10 meV because of the absence of non-radiative inner-shell transitions. [Pg.505]

Freiburg [22] and an electron-cyclotron-resonance ion trap (ECRIT) [23], it may soon be possible to make absolute wavelength measurements of the Lyman-a transitions in hydrogen-like ions, using hat or double hat crystal spectrometers. [Pg.734]

S. Biri, L. Simons, D. Hitz, Electron cyclotron resonance ion trap a hybrid magnetic system with very high mirror ratio for highly charged ion production and trapping. Rev. Set. Instrum. 71 (2000) 1116-1118. [Pg.233]

Some ion sources and fusion facilities in the plasma plane. PIG Penning Ion Gauge, ECRIS Electron Cyclotron Resonance Ion Source, EBIS/EBIT Electron Beam Ion Source or Trap, laser plasma produced by laser ablation in solids, tokamak fusion device of light ions, fully stripped uranium ion... [Pg.2324]

Other types of mass spectrometer can use point, array, or both types of ion detection. Ion trap mass spectrometers can detect ions sequentially or simultaneously and in some cases, as with ion cyclotron resonance (ICR), may not use a formal electron multiplier type of ion collector at all the ions can be detected by their different electric field frequencies in flight. [Pg.212]

The apparatus and techniques of ion cyclotron resonance spectroscopy have been described in detail elsewhere. Ions are formed, either by electron impact from a volatile precursor, or by laser evaporation and ionization of a solid metal target (14), and allowed to interact with neutral reactants. Freiser and co-workers have refined this experimental methodology with the use of elegant collision induced dissociation experiments for reactant preparation and the selective introduction of neutral reactants using pulsed gas valves (15). Irradiation of the ions with either lasers or conventional light sources during selected portions of the trapped ion cycle makes it possible to study ion photochemical processes... [Pg.17]

Rate Measurement. We have used pulsed ion cyclotron resonance (ICR) spectroscopy to study these gas-phase, ion-molecule reactions. The method has been described elsewhere in considerable detail (5). Basically, ions are generated by pulsed electron impact and held in a magnetic-electric field trap for times up to about 1 sec, during which they can react with a... [Pg.88]

General Methods. The instrument that will be used to execute the gas-phase experimental portion of the proposed research is a Finnigan 2001 dual-cell Fourier transform ion cyclotron resonance mass spectrometer (FTMS or FTICR), equipped with both electron impact (FI) and electrospray ionization (FSl). FTMS is a high-resolution, high-sensitivity technique that allows the entrapment and detection of gas-phase species. Gas-phase ions are trapped in a magnetic field, much like a reactant sits in a flask in solution. The instrument is a mass spectrometer therefore, we will often refer to the mass-to-charge (m/z) ratio of ions, which is the method we use to identify species. (M-l) or (M-H) refers to a molecule M that has been deprotonated for example, HjO has an (M-f) ion of m/z 17 (HO ). [Pg.466]

This type of mass spectrometer, which is not widely used, allows mass determination with a high precision. An ion cyclotron resonance spectrometer is basically an ion trap ions formed by electron impact, for example, are subjected to the orthogonal magnetic field B, which induces cyclotronic movement in the. rv plane (Fig. 16.8). The radius of the circular movement, which depends on kinetic energy, is given by equation (16.2). If the velocity v is small and the magnetic field B is intense, the radius of the trajectory will be small and the ions will be trapped in the ionisation... [Pg.299]

Attempts have been made to observe and experimentally determine the structure of CH5+ in the gas phase and study it in the condensed state using IR spectroscopy,764 765 pulse electron-beam mass spectrometry,766 and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).767 However, an unambiguous structure determination was unsuccessful. Retardation of the degenerate rearrangement was achieved by trapping the ion in clusters with H2, CH4, Ar, or N2. [Pg.209]

The analytically important features of Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometry (1) have recently been reviewed (2-9) ultrahigh mass resolution (>1,000,000 at m/z. < 200) with accurate mass measurement even 1n gas chromatography/mass spectrometry experiments sensitive detection of low-volatility samples due to 1,000-fold lower source pressure than in other mass spectrometers versatile Ion sources (electron impact (El), self-chemical ionization (self-Cl), laser desorption (LD), secondary ionization (e.g., Cs+-bombardment), fast atom bombardment (FAB), and plasma desorption (e.g., 252cf fission) trapped-ion capability for study of ion-molecule reaction connectivities, kinetics, equilibria, and energetics and mass spectrometry/mass spectrometry (MS/MS) with a single mass analyzer and dual collision chamber. [Pg.21]

B. S. Freiser, "Electron Impact Ionization of Argon Ions by Trapped Ion Cyclotron Resonance Spectrometry," Int. J. Mass Spectrom. Ion Proc., 21, 263-267 (1980). [Pg.80]

Ion cyclotron resonance [343] and ion trapping in electron space charge [332, 533] are other techniques which have been used to vary source residence times [i.e. vary the limit t2 of the observation window, eqn. (9)] and thereby obtain estimates of kinetic shifts. [Pg.92]

Gas-phase acidities and basicities for many organic compounds are now available, primarily due to the development within the past decades of three new experimental techniques pulsed high-pressure i.e. 0.1... 1300 Pa) mass spectrometry (HPMS) [22, 23, 118], the flowing afterglow (FA) technique with a fast-flowing gas like helium in the pressure range of ca. 10 . .. 10 Pa [119], and pulsed electron beam, trapped ion cell, ion cyclotron resonance (ICR) spectrometry, carried out at ca. 10 ... 10 Pa [24-26, 115]. [Pg.100]

Fig. 1 Schematic representation of a mass spectrometer depicting its main components and the different modes used. Abbreviations DIP direct insertion probe DEP direct exposure probe GC gas chromatography LC liquid chromatography CE capillary chromatography TEC thin-layer chromatography FEE field-flow fractionation APCI atmospheric pressure ionization El electron impact Cl chemical ionization FAB fast-atom bombardment PD plasma desorption MALDI matrix-assisted laser desorption ionization ED laser desorption TSP thermospray ESI electron spray ionization HSI hypherthermal surface ionization Q quadropole QQQ triple quadropole TOE time-of-fiight FTMS Fourier transform mass spectrometer IT ion trap EM electrom multiplier PM photomultiplier ICR ion cyclotron resonance. Fig. 1 Schematic representation of a mass spectrometer depicting its main components and the different modes used. Abbreviations DIP direct insertion probe DEP direct exposure probe GC gas chromatography LC liquid chromatography CE capillary chromatography TEC thin-layer chromatography FEE field-flow fractionation APCI atmospheric pressure ionization El electron impact Cl chemical ionization FAB fast-atom bombardment PD plasma desorption MALDI matrix-assisted laser desorption ionization ED laser desorption TSP thermospray ESI electron spray ionization HSI hypherthermal surface ionization Q quadropole QQQ triple quadropole TOE time-of-fiight FTMS Fourier transform mass spectrometer IT ion trap EM electrom multiplier PM photomultiplier ICR ion cyclotron resonance.
The sample inlet is constituted of a heated fused silica capillary, which is maintained at approximately 200 "C and is encased in a flexible tube. The ion source, in the case of electronic ionization, is composed of electrically heated metallic filaments. Mass analyzers, separating the analytes, include time-of-flight (TOF), linear quadmpole (Q), linear quadrupole ion trap (LIT), quadmpole ion trap (QIT), Fourier transform ion cyclotron resonance (FT-ICR), etc. These detectors differ in their capacity to treat ion beams in a continuous or pulsed (TOF). Quadmpole mass analyzers stabilize and destabilize the ion paths with an oscillating electrical field. A triple quad is more recent technology and consists of three quadmpole stages. Quadmpole ion traps will sequentially eject ions that have been trapped in a ring electrode between two endcap electrodes. [Pg.289]


See other pages where Electron cyclotron resonance ion trap is mentioned: [Pg.219]    [Pg.230]    [Pg.234]    [Pg.219]    [Pg.230]    [Pg.234]    [Pg.398]    [Pg.184]    [Pg.184]    [Pg.382]    [Pg.84]    [Pg.195]    [Pg.395]    [Pg.258]    [Pg.34]    [Pg.375]    [Pg.642]    [Pg.117]    [Pg.334]    [Pg.642]    [Pg.328]    [Pg.778]    [Pg.402]    [Pg.732]    [Pg.230]    [Pg.8]    [Pg.66]    [Pg.91]    [Pg.845]    [Pg.921]    [Pg.615]   


SEARCH



Cyclotron

Cyclotron resonance

Electronic trap

Ion cyclotron

Ion cyclotron resonance

Ion cyclotron resonance trap

Ion trap

Ion trapping

Resonant ion

Trapped ion cyclotron resonance

Trapped ions

© 2024 chempedia.info