Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytic reactions basic principles

From the basic principles we can make preliminary design estimates. Inefficiencies in a system arise because of voltage losses and because all of the current does not enter into the desired reactions. The minimum potential required to perform an electrolytic reaction is given by the reversible cell potential, a thermodynamic quantity. Additional voltage that must be applied at the electrodes represents a loss that is manifested in a higher energy requirement. The main causes of voltage loss are ohmic drops and overpotentials. The applied potential is equal to the sum of the losses plus the thermodynamic requirement ... [Pg.248]

Cells operating with hydrogen as the fuel are the simplest such devices, and serve to illustrate basic principles. Schematic diagrams of hydrogen/oxygen cells appear in Fig. 13.6. When the electrolyte is acidic [Fig. 13.6(a)], the half-cell reaction occurring at the hydrogen electrode (anode) is ... [Pg.495]

These arguments are standard for all reversible reactions, and discussion of what happens when reactants and products are mixed, and, in particular, the prediction of the direction of reaction, are individual for each reaction. The basic principles, however, are identical for all cases. Typical reversible reactions for electrolyte solutions involve acid-base equilibria, ion pair, complex and chelate formation, and heterogeneous reactions such as solubility of sparingly soluble salts. [Pg.41]

To understand the basic principles of operation of an energy conversion or storage device it is important to know what an electrochemical cell is. Basically, it is a device in which a chemical reaction either generates or is caused by an electric current. A galvanic cell is an electrochemical cell in which a spontaneous chemical reaction is used to generate an electric current. An electrolytic cell, in turn, is an electrochemical cell in which a reaction is driven in its nonspontaneous direction by an externally applied electric current. There are three types of galvanic cell the primary, the secondary, and the fuel cell [5,6]. [Pg.94]

The basic components of a general fuel cell are two porous electrodes, i.e. anode and cathode, which are separated by a solid or liquid electrolyte. The electrolyte is impervious to gases. Fuel is supplied to the anode side and air is supplied to the cathode side. The oxidation reaction is made possible by conduction of ions through the electrolyte. Although the basic principle behind the operation of a fuel cell is quite simple, many challenges have to be overcome before its successful implementation. [Pg.357]

With the advent of advanced electronics and computerization, electrochemical techniques have evolved rapidly. The most common technologies today are the polarization resistance technique, electrochemical impedance, and Tafel extrapolation. Regardless of the technique used, each relies on the same basic principles in each test, a metallic coupon in an electrolyte is subject to an electrical perturbation. This perturbation is the appUcation of a current from an external source (power supply). This current stimulates the surface corrosion reactions. The voltage (potential) response of the coupon is measured and correlated with the current appUed—a galvanodynamic test. Conversely, the coupon potential is controlled and correlated with the requisite current—a potentiodynamic test. In either case, the resultant current is representative of the rate determining mass transfer or charge transfer rate. This may be related to the corrosion rate. [Pg.208]

The next several sections describe battery cells, or voltaic cells (also called galvanic cells). These are a kind of electrochemical cell. An electrochemical cell is a system consisting of electrodes that dip into an electrolyte and in which a chemical reaction either uses or generates an electric current. A voltaic, or galvanic, cell is an electrochemical cell in which a spontaneous reaction generates an electric current. An electrolytic cell is an electrochemical cell in which an electric current drives an otherwise nonspontaneous reaction. In the next sections, we will discuss the basic principles behind voltaic cells and then explore some of their commercial uses. [Pg.808]

The section on basic principles contains background information on fuel cells, including fundamental principles such as electrochemistry, thermodynamics, and kinetics of fuel cell reactions as well as mass and heat transfer in fuel cells. The section on design explores important characteristics associated with various fuel cell components, electrodes, electrocatalysts, and electrolytes, while the section on analysis examines phenomena characterization and modeling both at the component and system levels. [Pg.683]

Among different liquid-solid interfaces, fhe boundary between an electrolyte and a metal electrode is the one which has been most investigated in surface science. This is dictated by its importance for elecfrochemisfry and by a rich variety of interesting phenomena. In some respect the relevant processes are similar to those at the gas-solid interface. On the other hand, the electrified character of the electrolyte-solid interface resulfs in some peculiarities. One can control interface properties through external manipulation of the interfacial potential difference. All reactions that involve charge transfer respond directly to this quantity. In this section we shall consider the structure of the electric double layer which takes place at an electrolyte-solid interface and the basic principles of control for various reactions at this boundary. [Pg.45]

The basic theory of the kinetics of charge-transfer reactions is that the electron transfer is most probable when the energy levels of the initial and final states of the system coincide [5] following the Franck-Condon principle. Thus, the efficiency of the redox reaction processes is primarily controlled by the energy overlap between the quantum states in the energy bands of the semiconductor and the donor and acceptor levels of the reactants in the electrolyte (Fig. 1). In the ideal case, the anodic current density is given by the... [Pg.309]

The term electromembrane process is used to describe an entire family of processes that can be quite different in their basic concept and their application. However, they are all based on the same principle, which is the coupling of mass transport with an electrical current through an ion permselective membrane. Electromembrane processes can conveniently be divided into three types (1) Electromembrane separation processes that are used to remove ionic components such as salts or acids and bases from electrolyte solutions due to an externally applied electrical potential gradient. (2) Electromembrane synthesis processes that are used to produce certain compounds such as NaOH, and Cl2 from NaCL due to an externally applied electrical potential and an electrochemical electrode reaction. (3) Eletectromembrane energy conversion processes that are to convert chemical into electrical energy, as in the H2/02 fuel cell. [Pg.83]

There is another way in which electrons can be rearranged in a chemical reaction, and that is through a wire. Electrochemistry is redox chemistry wherein the site for oxidation is separated from the site for reduction. Electrochemical setups basically come in two flavors electrolytic and voltaic (also known as galvanic) cells. Voltaic cells are cells that produce electricity, so a battery would be classed as a voltaic cell. The principles that drive voltaic cells are the same that drive all other chemical reactions, except the electrons are exchanged though a wire rather than direct contact. The reactions are redox reactions (which is why they produce an electron current) the reactions obey the laws of thermodynamics and move toward equilibrium (which is why batteries run down) and the reactions have defined rates (which is why some batteries have to be warmed to room temperature before they produce optimum output). [Pg.261]


See other pages where Electrolytic reactions basic principles is mentioned: [Pg.173]    [Pg.301]    [Pg.1]    [Pg.185]    [Pg.516]    [Pg.417]    [Pg.497]    [Pg.72]    [Pg.513]    [Pg.432]    [Pg.13]    [Pg.582]    [Pg.84]    [Pg.669]    [Pg.472]    [Pg.211]    [Pg.591]    [Pg.123]    [Pg.748]    [Pg.591]    [Pg.172]    [Pg.187]    [Pg.391]    [Pg.591]    [Pg.533]    [Pg.839]    [Pg.188]    [Pg.1]    [Pg.1029]    [Pg.188]    [Pg.490]    [Pg.431]    [Pg.4364]    [Pg.762]    [Pg.1029]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Basic reactions

Electrolytic reactions (

Principle reactions

© 2024 chempedia.info