Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytes, fluoride

The auxiliary electrolyte is generally an alkali metal or an alkaline earth metal halide or a mixture of these. Such halides have high decomposition potentials, relatively low vapor pressures at the operating bath temperatures, good electrolytic conductivities, and high solubilities for metal salts, or in other words, for the functional component of the electrolyte that acts as the source of the metal in the electrolytic process. Between the alkali metal halides and the alkaline earth metal halides, the former are preferred because the latter are difficult to obtain in a pure anhydrous state. In situations where a metal oxide is used as the functional electrolyte, fluorides are preferable as auxiliary electrolytes because they have high solubilities for oxide compounds. The physical properties of some of the salts used as electrolytes are given in Table 6.17. [Pg.698]

Bgin, E., Egyed, M., Shlosberg, A. (1972). Biological-biochemical method for the diagnosis of fluoroacetamide poisoning. II. Certain enzymes and electrolytes. Fluoride 5 136-44. [Pg.193]

Discarded pot linings still contain 10-15% absorbed fluorides, which could cause an environmental hazard. However, increased costs for electrolyte fluoride replacement have stimulated more smelters to crush used pot linings and recover the fluoride content by extraction with aqueous base. The filtered extract is then used for the preparation of synthetic cryolite. If spent pot linings are discarded to a landfill, any drainage from the site has to be treated. Landfill disposal also has a risk of occasional fires from spontaneous ignition of lining material. [Pg.384]

Cobali in) fluoride, C0F3. Brown powder (C0F3 plus F2) also forms a green hydrate by electrolytic oxidation. C0F3 is widely used in the fluorinalion of organic derivatives. Gives complexes e.g. MjCoFg. [Pg.104]

Blue manganese lV) fluoride, Mnp4 (Mn plus Fj), is immediately hydrolysed by water complex hexafluoromanganales containing [MnF j] " ions are yellow (electrolytic oxidation of lower fluorides or use of BrFs). [Pg.250]

Fluorine cannot be prepared directly by chemical methods. It is prepared in the laboratory and on an industrial scale by electrolysis. Two methods are employed (a) using fused potassium hydrogen-fluoride, KHFj, ill a cell heated electrically to 520-570 K or (b) using fused electrolyte, of composition KF HF = 1 2, in a cell at 340-370 K which can be electrically or steam heated. Moissan, who first isolated fluorine in 1886, used a method very similar to (b) and it is this process which is commonly used in the laboratory and on an industrial scale today. There have been many cell designs but the cell is usually made from steel, or a copper-nickel alloy ( Monel metal). Steel or copper cathodes and specially made amorphous carbon anodes (to minimise attack by fluorine) are used. Hydrogen is formed at the cathode and fluorine at the anode, and the hydrogen fluoride content of the fused electrolyte is maintained by passing in... [Pg.316]

Further improvements in anode performance have been achieved through the inclusion of certain metal salts in the electrolyte, and more recently by dkect incorporation into the anode (92,96,97). Good anode performance has been shown to depend on the formation of carbon—fluorine intercalation compounds at the electrode surface (98). These intercalation compounds resist further oxidation by fluorine to form (CF ), have good electrical conductivity, and are wet by the electrolyte. The presence of certain metals enhance the formation of the intercalation compounds. Lithium, aluminum, or nickel fluoride appear to be the best salts for this purpose (92,98). [Pg.127]

Another use for cryoHte is in the production of pure metal by electrolytic refining. A high density electrolyte capable of floating Hquid aluminum is needed, and compositions are used containing cryoHte with barium fluoride to raise the density, and aluminum fluoride to raise the current efficiency. [Pg.145]

Lithium fluoride is an essential component of the fluorine cell electrolyte 1% LiF in the KF 2HF electrolyte improves the wettability of the carbon anodes and lowers the tendency of the cells to depolarize (18). Thermoluminescent radiation dosimeters used in personnel and environmental monitoring and in radiation therapy contain lithium fluoride powder, extmded ribbons, or rods (19). [Pg.206]

Molten lithium fluoride is used in salt mixtures for an electrolyte in high temperature batteries (qv) (FLINAK) (20), and as a carrier in breeder reactors (FLIBE) (21) (see Nuclear reactors). [Pg.206]

Manufacture and Economics. Nitrogen tritiuoride can be formed from a wide variety of chemical reactions. Only two processes have been technically and economically feasible for large-scale production the electrolysis of molten ammonium acid fluoride and the direct fluorination of the ammonia in the presence of molten ammonium fluoride. In the electrolytic process, NF is produced at the anode and H2 is produced at the cathode. In a divided cell of 4 kA having nickel anodes, extensive dilution of the gas streams with N2 was used to prevent explosive reactions between NF and H2 (17). [Pg.217]

Fluorocarbons are made commercially also by the electrolysis of hydrocarbons in anhydrous hydrogen fluoride (Simons process) (14). Nickel anodes and nickel or steel cathodes are used. Special porous anodes improve the yields. This method is limited to starting materials that are appreciably soluble in hydrogen fluoride, and is most useflil for manufacturing perfluoroalkyl carboxyflc and sulfonic acids, and tertiary amines. For volatile materials with tittle solubility in hydrofluoric acid, a complementary method that uses porous carbon anodes and HF 2KF electrolyte (Phillips process) is useflil (14). [Pg.283]

The metallic salts of trifluoromethanesulfonic acid can be prepared by reaction of the acid with the corresponding hydroxide or carbonate or by reaction of sulfonyl fluoride with the corresponding hydroxide. The salts are hydroscopic but can be dehydrated at 100°C under vacuum. The sodium salt has a melting point of 248°C and decomposes at 425°C. The lithium salt of trifluoromethanesulfonic acid [33454-82-9] CF SO Li, commonly called lithium triflate, is used as a battery electrolyte in primary lithium batteries because solutions of it exhibit high electrical conductivity, and because of the compound s low toxicity and excellent chemical stabiUty. It melts at 423°C and decomposes at 430°C. It is quite soluble in polar organic solvents and water. Table 2 shows the electrical conductivities of lithium triflate in comparison with other lithium electrolytes which are much more toxic (24). [Pg.315]

Re OPe . The final step in the chemical processing of rare earths depends on the intended use of the product. Rare-earth chlorides, usually electrolytically reduced to the metallic form for use in metallurgy, are obtained by crystallisation of aqueous chloride solutions. Rare-earth fluorides, used for electrolytic or metaHothermic reduction, are obtained by precipitation with hydrofluoric acid. Rare-earth oxides are obtained by firing hydroxides, carbonates or oxalates, first precipitated from the aqueous solution, at 900°C. [Pg.546]

Lithium carbonate addition to HaH-Heroult aluminum ceU electrolyte lowers the melting point of the eutectic electrolyte. The lower operating temperatures decrease the solubiHty of elemental metals in the melt, allowing higher current efficiencies and lower energy consumption (55). The presence of Hthium also decreases the vapor pressure of fluoride salts. [Pg.225]

If the ECM of titanium is attempted in sodium chloride electrolyte, very low (10—20%) current efficiency is usually obtained. When this solution is replaced by some mixture of fluoride-based electrolytes, to achieve greater efficiencies (> 60%), a higher voltage (ca 60 V) is used. These conditions ate needed to break down the tenacious oxide film that forms on the surface of titanium. It is this film which accounts for the corrosion resistance of titanium, and together with its toughness and lightness, make this metal so useful in the aircraft engine industry. [Pg.308]

The occurrence of pitting seems to stem from the differential stabiUty of the passive film that forms on the titanium alloy. This film does not break down uniformly even when the electrolytes are fluoride and bromide based. The pitting can be so severe that special measures are needed to counteract it. [Pg.309]

Niobic Acid. Niobic acid, Nb20 XH2O, includes all hydrated forms of niobium pentoxide, where the degree of hydration depends on the method of preparation, age, etc. It is a white insoluble precipitate formed by acid hydrolysis of niobates that are prepared by alkaH pyrosulfate, carbonate, or hydroxide fusion base hydrolysis of niobium fluoride solutions or aqueous hydrolysis of chlorides or bromides. When it is formed in the presence of tannin, a volurninous red complex forms. Freshly precipitated niobic acid usually is coUoidal and is peptized by water washing, thus it is difficult to free from traces of electrolyte. Its properties vary with age and reactivity is noticeably diminished on standing for even a few days. It is soluble in concentrated hydrochloric and sulfuric acids but is reprecipitated on dilution and boiling and can be complexed when it is freshly made with oxaHc or tartaric acid. It is soluble in hydrofluoric acid of any concentration. [Pg.28]

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

Preparation of Plutonium Metal from Fluorides. Plutonium fluoride, PuF or PuF, is reduced to the metal with calcium (31). Although the reactions of Ca with both fluorides are exothermic, iodine is added to provide additional heat. The thermodynamics of the process have been described (133). The purity of production-grade Pu metal by this method is ca 99.87 wt % (134). Metal of greater than 99.99 wt % purity can be produced by electrorefining, which is appHcable for Pu alloys as well as to purify Pu metal. The electrorefining has been conducted at 740°C in a NaCl—KCl electrolyte containing PuCl [13569-62-5], PuF, or PuF. Processing was done routinely on a 4-kg Pu batch basis (135). [Pg.201]

According to Faraday s law, one Faraday (26.80 Ah) should deposit one gram equivalent (8.994 g) of aluminum. In practice only 85—95% of this amount is obtained. Loss of Faraday efficiency is caused mainly by reduced species ( Al, Na, or A1F) dissolving or dispersing in the electrolyte (bath) at the cathode and being transported toward the anode where these species are reoxidized by carbon dioxide forming carbon monoxide and metal oxide, which then dissolves in the electrolyte. Certain bath additives, particularly aluminum fluoride, lower the content of reduced species in the electrolyte and thereby improve current efficiency. [Pg.97]

Piebaked anodes aie produced by molding petroleum coke and coal tar pitch binder into blocks typically 70 cm x 125 cm x 50 cm, and baking to 1000—1200°C. Petroleum coke is used because of its low impurity (ash) content. The more noble impurities, such as iron and siUcon, deposit in the aluminum whereas less noble ones such as calcium and magnesium, accumulate as fluorides in the bath. Coal-based coke could be used, but extensive and expensive prepurification would be required. Steel stubs seated in the anode using cast iron support the anodes (via anode rods) in the electrolyte and conduct electric current into the anodes (Fig. 3). Electrical resistivity of prebaked anodes ranges from 5-6 Hm anode current density ranges from 0.65 to 1.3 A/crn. ... [Pg.98]

This process used an all-fluoride electrolyte, a portion of which was frozen on the carbon sidewalls to prevent short circuiting through the wads. One version of the cell operated at 20,000 A and 950—1000°C. The highest purity aluminum produced was 99.98%. A summary of the cell characteristics is given in Table 9. [Pg.101]

Metalliding. MetaUiding, a General Electric Company process (9), is a high temperature electrolytic technique in which an anode and a cathode are suspended in a molten fluoride salt bath. As a direct current is passed from the anode to the cathode, the anode material diffuses into the surface of the cathode, which produces a uniform, pore-free alloy rather than the typical plate usually associated with electrolytic processes. The process is called metalliding because it encompasses the interaction, mostly in the soHd state, of many metals and metalloids ranging from beryUium to uranium. It is operated at 500—1200°C in an inert atmosphere and a metal vessel the coulombic yields are usually quantitative, and processing times are short controUed... [Pg.47]

Electrolysis. Electrowinning of zirconium has long been considered as an alternative to the KroU process, and at one time zirconium was produced electrolyticaHy in a prototype production cell (70). Electrolysis of an aH-chloride molten-salt system is inefficient because of the stabiUty of lower chlorides in these melts. The presence of fluoride salts in the melt increases the stabiUty of in solution, decreasing the concentration of lower valence zirconium ions, and results in much higher current efficiencies. The chloride—electrolyte systems and electrolysis approaches are reviewed in References 71 and 72. The recovery of zirconium metal by electrolysis of aqueous solutions in not thermodynamically feasible, although efforts in this direction persist. [Pg.431]


See other pages where Electrolytes, fluoride is mentioned: [Pg.482]    [Pg.394]    [Pg.103]    [Pg.482]    [Pg.394]    [Pg.103]    [Pg.52]    [Pg.179]    [Pg.271]    [Pg.122]    [Pg.125]    [Pg.128]    [Pg.128]    [Pg.144]    [Pg.316]    [Pg.319]    [Pg.496]    [Pg.175]    [Pg.97]    [Pg.101]    [Pg.101]    [Pg.137]    [Pg.337]    [Pg.332]    [Pg.403]    [Pg.404]    [Pg.196]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 , Pg.147 , Pg.148 ]




SEARCH



Electrolytic Fluorination of Heterocyclic Compounds in Trialkylamine Complexes with Anhydrous Hydrogen Fluoride

Etching fluoride electrolytes

Fluoride solid electrolytes

Surface silicon, fluoride electrolytes

© 2024 chempedia.info