Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytes Arrhenius

Feb. 19,1859, Wijk, Sweden - Oct. 2,1927, Stockholm, Sweden). Arrhenius developed the theory of dissociation of electrolytes in solutions that was first formulated in his Ph.D. thesis in 1884 Recherches sur la conductibilit galvanique des dectrolytes (Investigations on the galvanic conductivity of electrolytes). The novelty of this theory was based on the assumption that some molecules can be split into ions in aqueous solutions. The - conductivity of the electrolyte solutions was explained by their ionic composition. In an extension of his ionic theory of electrolytes, Arrhenius proposed definitions for acids and bases as compounds that generate hydrogen ions and hydroxyl ions upon dissociation, respectively (- acid-base theories). For the theory of electrolytes Arrhenius was awarded the Nobel Prize for Chemistry in 1903 [i, ii]. He has popularized the theory of electrolyte dissociation with his textbook on electrochemistry [iv]. Arrhenius worked in the laboratories of -> Boltzmann, L.E., -> Kohlrausch, F.W.G.,- Ostwald, F.W. [v]. See also -> Arrhenius equation. [Pg.34]

The first person to recognize the essential nature of acids and bases was Svante Arrhenius. Based on his experiments with electrolytes, Arrhenius postulated that acids produce hydrogen ions in aqueous solution, and bases produce hydroxide ions. At the time of its discovery the Arrhenius concept of acids and bases was a major step forward in quantifying acid—base chemistry, but this concept is limited because it applies only to aqueous solutions and allows for only one kind of base—the hydroxide ion. A more general definition of acids and bases was suggested independently by the Danish chemist Johannes N. Bronsted (1879-1947) and the English chemist Thomas M. Lowry (1874-1936) in 1923. In terms of the Bronsted—Lowry definition, an acid is a proton (H+) donor, and a base is a proton acceptor. For example, when gaseous HCl dissolves in water, each HCl molecule donates a proton to a water molecule, and so HCl qualifies as a Bronsted-Lowry acid. The molecule that accepts the proton—water in this case—is a Bronsted-Lowry base. [Pg.227]

The first person to recognize the essential nature of acids and bases was Svante Arrhenius. On the basis of his experiments with electrolytes, Arrhenius postulated that acids produce hydrogen ions in aqueous solution, whereas bases produce hydroxide ions. [Pg.562]

One of the early uses of limiting conductances was to determine the degree of dissociation of weak electrolytes. Arrhenius suggested that, at any given concentration, the measured equivalent conductance (when compared to the limiting equivalent conductance where all ions are dissociated) should be a measure of the degree of dissociation, a. This can be expressed as... [Pg.117]

Arrhenius himself was recalcitrant on one point he throughout insisted that his interpretation of conductivity in terms of a dissociation equilibrium applies to strong electrolytes as well as to weak ones for an account of this controversy see ref. 13. Suggestions that strong electrolytes are completely dissociated and that ionic interactions must be invoked to explain the conductivities of their solutions were made by G.N. Lewis (14-16), Niels Bjerrum (17, 18), W. Sutherland (14) and S.R. Milner (20-24). Bjerrum provided spectroscopic evidence for this point of view, and Sutherland and Milner did important work on the theory of ionic interactions. Finally, in 1923, Debye and Hllckel (25, 26) developed their comprehensive treatment of strong electrolytes. Arrhenius, however, rejected these ideas and for the most part refused to discuss them. At a meeting of the Faraday Society held in January, 1919, Arrhenius commented that Bjerrum s idea "seems not to agree very well with experiment" (27), and he maintained this position until his death in 1927. [Pg.66]

Spectroscope developed Bunsen and Kirchhoff 1869 Mendeleev s first periodic table organizes 63 known elements 1885 Balmer formula for visible H spectrum 1894 First "inert gas" discovered 1895 X rays discovered Roentgen 1896 Radioactivity discovered Becquerel 1874 Tetrahedral carbon atom Le Bel and van t Hoff 1884 Dissociation theory of electrolytes Arrhenius 1869 Chain theory of ammonates Blomstrand 1884 Amendments to chain theory Jorgensen 1892 Werner s dream about coordination compounds... [Pg.11]

The last two relations are expressions of the Ostwald dilution law. For such electrolytes, Arrhenius showed that a, the degree of dissociation, may be given quite well by the following... [Pg.56]

The brief discussion above shows that the structure of a polymer electrolyte and the ion conduction mechanism are complex. Furthermore, the polymer is a weak electrolyte, whose ions form ion pairs, triple ions, and multidentate ions after its ionic dissociation. Currently, there are several important models that attempt to describe the ion conduction mechanisms in polymer electrolytes Arrhenius theory, the Vogel-Tammann-Fulcher (VTF) equation, the Williams-Landel-Ferry (WLF) equation, free volume model, dynamic bond percolation model (DBPM), the Meyer-Neldel (MN) law, effective medium theory (EMT), and the Nernst-Einstein equation [1]. [Pg.361]

This system of nomenclature has withstood the impact of later experimental discoveries and theoretical developments that have since the time of Guyton de Morveau and Lavoisier greatiy altered the character of chemical thought, eg, atomic theory (Dalton, 1802), the hydrogen theory of acids (Davy, 1809), the duahstic theory (Berzehus, 1811), polybasic acids (Liebig, 1834), Periodic Table (Mendeleev and Meyer, 1869), electrolytic dissociation theory (Arrhenius, 1887), and electronic theory and modem knowledge of molecular stmcture. [Pg.115]

Hydrogen was recognized as the essential element in acids by H. Davy after his work on the hydrohalic acids, and theories of acids and bases have played an important role ever since. The electrolytic dissociation theory of S. A. Arrhenius and W. Ostwald in the 1880s, the introduction of the pH scale for hydrogen-ion concentrations by S. P. L. Sprensen in 1909, the theory of acid-base titrations and indicators, and J. N. Brdnsted s fruitful concept of acids and conjugate bases as proton donors and acceptors (1923) are other land marks (see p. 48). The di.scovery of ortho- and para-hydrogen in 1924, closely followed by the discovery of heavy hydrogen (deuterium) and... [Pg.32]

Another way of looking at high ionic conductivities of solid electrolytes is to consider the activation enthalpy as illustrated in Fig. 8. Generally, the activation enthalpy is strongly correlated with the room-temperature ionic conductivity the higher the room-temperature ionic conductivity, the lower the activation enthalpy. The straight lines in the Arrhenius... [Pg.535]

Amplitude of a process, 114. Andrew s diagram, 173 Anisotropic bodies, 193 Aphorism of Clausius, 83, 92 Arrhenius theory of electrolytic dissociation, 301 Aschistic process, 31, 36, 51 Atmosphere, 39 Atomic energy, 26 Availability, 65, 66 Available energy, 66, 77, 80, 98, 101... [Pg.539]

From his conductivity measurements on solutions, Arrhenius concluded that strong electrolytes are not exceptions. Instead they dissociate into ions. When z = 2, it meant that each solute species dissociated to give two ions. A compound with Z = 3 dissociated to give three ions. Moreover, interpreting the results of his experiments at varying levels of concentration, Arrhenius concluded that at sufficiently high dilution, every electrolyte becomes fully dissociated. [Pg.1225]

The first substantial constitutive concept of acid and bases came only in 1887 when Arrhenius applied the theory of electrolytic dissociation to acids and bases. An acid was defined as a substance that dissociated to hydrogen ions and anions in water (Day Selbin, 1969). For the first time, a base was defined in terms other than that of an antiacid and was regarded as a substance that dissociated in water into hydroxyl ions and cations. The reaction between an acid and a base was simply the combination of hydrogen and hydroxyl ions to form water. [Pg.14]

The theory of electrolytic dissociation also provided the possibility for a transparent definition of the concept of acids and bases. According to the concepts of Arrhenius, an acid is a substance which upon dissociation forms hydrogen ions, and a base is a substance that forms hydroxyl ions. Later, these concepts were extended. [Pg.105]

The theory of electrolytic dissociation was not immediately recognized universally, despite the fact that it could qualitatively and quantitatively explain certain fundamental properties of electrolyte solutions. For many scientists the reasons for spontaneous dissociation of stable compounds were obscure. Thus, an energy of about 770kJ/mol is required to break up the bonds in the lattice of NaCl, and about 430kJ/mol is required to split H l bonds during the formation of hydrochloric acid solution. Yet the energy of thermal motions in these compounds is not above lOkJ/mol. It was the weak point of Arrhenius s theory that this mismatch could not be explained. [Pg.105]

Between 1865 and 1887, Dmitri 1. Mendeleev developed the chemical theory of solutions. According to this theory, the dissolution process is the chemical interaction between the solutes and the solvent. Upon dissolution of salts, dissolved hydrates are formed in the aqueous solution which are analogous to the solid crystal hydrates. In 1889, Mendeleev criticized Arrhenius s theory of electrolytic dissociation. Arrhenius, in turn, did not accept the idea that hydrates exist in solutions. [Pg.105]

Numerous measurements of the conductivity of aqueous solutions performed by the school of Friedrich Kohhansch (1840-1910) and the investigations of Jacobns van t Hoff (1852-1911 Nobel prize, 1901) on the osmotic pressure of solutions led the young Swedish physicist Svante August Arrhenius (1859-1927 Nobel prize, 1903) to establish in 1884 in his thesis the main ideas of his famous theory of electrolytic dissociation of acids, alkalis, and salts in solutions. Despite the sceptitism of some chemists, this theory was generally accepted toward the end of the centnry. [Pg.696]

The acidic character of acids depends on the availability ofhydrogen ions in their solution. An acid X3 is said to be stronger than another acid X2 if, in equimolar solutions, X3 provides more hydrogen ions than does X2. This will be possible provided that the degree of dissociation of X3 is greater than that of X2. Based on the Arrhenius theory of electrolytic dissociation, solutions may be classified in the manner shown in Figure 6.1. If the ionization of an acid is almost complete in water, the acid is said to be a strong acid, but if the... [Pg.585]

The elucidation of the electrical behavior of electrolytes owes much to Arrhenius, who was the originator of the theory of electrolytic dissociation, generally, known as the ionic theory. [Pg.605]

Arrhenius postulated in 1887 that an appreciable fraction of electrolyte in water dissociates to free ions, which are responsible for the electrical conductance of its aqueous solution. Later Kohlrausch plotted the equivalent conductivities of an electrolyte at a constant temperature against the square root of its concentration he found a slow linear increase of A with increasing dilution for so-called strong electrolytes (salts), but a tangential increase for weak electrolytes (weak acids and bases). Hence the equivalent conductivity of an electrolyte reaches a limiting value at infinite dilution, defined as... [Pg.29]

The first theory of solutions of weak electrolytes was formulated in 1887 by S. Arrhenius (see Section 1.1.4). If the molar conductivity is introduced into the equations following from Arrhenius concepts of weak electrolytes, Eq. (2.4.17) is obtained, known as the Ostwald dilution law this equation... [Pg.13]


See other pages where Electrolytes Arrhenius is mentioned: [Pg.439]    [Pg.95]    [Pg.265]    [Pg.680]    [Pg.72]    [Pg.353]    [Pg.623]    [Pg.439]    [Pg.95]    [Pg.265]    [Pg.680]    [Pg.72]    [Pg.353]    [Pg.623]    [Pg.41]    [Pg.1296]    [Pg.186]    [Pg.605]    [Pg.98]    [Pg.1224]    [Pg.101]    [Pg.2]    [Pg.827]    [Pg.29]   
See also in sourсe #XX -- [ Pg.59 ]

See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Arrhenius electrolyte theory

Arrhenius’s theory of electrolytic

Electrolytic dissociation Arrhenius’ theory

The Arrhenius theory of electrolytes

© 2024 chempedia.info