Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolysis Humphry Davy

Sir Humphry Davy first isolated metallic sodium ia 1807 by the electrolytic decomposition of sodium hydroxide. Later, the metal was produced experimentally by thermal reduction of the hydroxide with iron. In 1855, commercial production was started usiag the DeviUe process, ia which sodium carbonate was reduced with carbon at 1100°C. In 1886 a process for the thermal reduction of sodium hydroxide with carbon was developed. Later sodium was made on a commercial scale by the electrolysis of sodium hydroxide (1,2). The process for the electrolytic decomposition of fused sodium chloride, patented ia 1924 (2,3), has been the preferred process siace iastallation of the first electrolysis cells at Niagara Falls ia 1925. Sodium chloride decomposition is widely used throughout the world (see Sodium compounds). [Pg.161]

The spectacular success (in 1807) of Humphry Davy, then aged 29 y, in isolating metallic potassium by electrolysis of molten caustic potash (KOH) is too well known to need repeating in detail." Globules of molten sodium were similarly prepared by him a few days later from molten caustic soda. Earlier experiments with aqueous solutions had been unsuccessful because of the great reactivity of these new elements. The names chosen by Davy reflect the sources of the elements. [Pg.68]

In 1808, Sir Humphry Davy reported the production of Mg in the form of an amalgam by electrolytic reduction of its oxide using a Hg cathode. In 1828, the Fr scientist A. Bussy fused Mg chloride with metallic K and became the first to produce free metallic Mg. Michael Faraday, in 1833, was the first to produce free metallic Mg by electrolysis, using Mg chloride. For many years, however, the metal remained a laboratory curiosity. In 1886, manuf of Mg was undertaken on a production scale in Ger, using electrolysis of fused Mg chloride. Until 1915, Ger remained the sole producer of Mg. However, when a scarcity of Mg arose in the USA as a result of the Brit blockade of Ger in 1915, and the price of Mg soared from 1.65 to 5.00 per lb, three producers initiated operations and thus started a Mg industry in the USA. Subsequently, additional companies attempted production of Mg, but by 1920 only two producers remained — The Dow Chemical Co (one of the original three producers) and. the American Magnesium Corn. In 1927. the latter ceased production, and Dow continued to be the sole domestic producer until 1941. The source of Mg chloride was brine pumped from deep wells. In 1941, Dow put a plant into operation at Freeport, Texas, obtaining Mg chloride from sea-... [Pg.21]

Sir Humphry Davy (1778-1829) isolated the element by electrolysis of molten caustic soda (NaOH). [Pg.37]

The electrolysis of aqueous solutions may not yield the desired products. Sir Humphry Davy (1778-1829) discovered the elements sodium and potassium by electrolyzing their molten salts. Before this discovery, Davy had electrolyzed aqueous solutions of sodium and potassium salts. He had not succeeded in reducing the metal ions to the pure metals at the cathode. Instead, his first experiments had produced hydrogen gas. Where did the hydrogen gas come from ... [Pg.526]

Boron - the atomic number is 5 and the chemical symbol is B. The name derives from the Arabic buraq for white . Although its compounds were known for thousands of years, it was not isolated until 1808 when the French chemists Louis-Joseph Gay-Lussac and Louis-Jacques Thenard obtained boron in an impure state and the English chemist, Humphry Davy, prepared pure boron by electrolysis. [Pg.6]

In 1807 Sir Humphry Davy (1778-1829) devised an electrolysis apparatus that used electrodes immersed in a bath of melted sodium hydroxide. When he passed an electric current through the system, metallic sodium formed at the negative (cathode) electrode. He first performed this experiment with molten potassium carbonate to liberate the metal potassium, and he soon followed up with the sodium experiment. Today, sodium and some of the other alkali metals are still produced by electrolysis. The types of electrolytes may vary using a mixture of sodium chloride and calcium chloride and then further purifying the sodium metal. [Pg.51]

By the early 1800s several chemists had separated potassium and sodium as elements from compounds. It was believed that metallic calcium could be obtained by similar methods. In 1808 Sir Humphry Davy finally produced the metallic element calcium from a mixture of lime and mercuric oxide by his experimental electrolysis apparatus. This was the same process he had previously used to discover several other alkali earth metals. [Pg.74]

In 1787 William Cruikshank (1745-1795) isolated, but did not identify, strontium from the mineral strontianite he examined. In 1790 Dr. Adair Crawford (1748—1794), an Irish chemist, discovered strontium by accident as he was examining barium chloride. He found a substance other than what he expected and considered it a new mineral. He named the new element strontium and its mineral strontianite after a village in Scotland. In 1808 Sir Humphry Davy treated the ore with hydrochloric acid, which produced strontium chloride. He then mixed mercury oxide with the strontium chloride to form an amalgam alloy of the two metals that collected at the cathode of his electrolysis apparatus. He heated the resulting substance to vaporize the mercury, leaving the strontium metal as a deposit. [Pg.77]

Chemists did not discover the mineral witherite (BaCO ) until the eighteenth century. Carl Wilhelm Scheele (1742—1786) discovered barium oxide in 1774, but he did not isolate or identify the element barium. It was not until 1808 that Sir Humphry Davy used molten barium compounds (baryta) as an electrolyte to separate, by electrolysis, the barium cations, which were deposited at the negative cathode as metallic barium. Therefore, Davy received the credit for bariums discovery. [Pg.80]

Sir Humphry Davy attempted to isolate this unidentified element through electrolysis—but failed. It was not until 1824 that Jons Jakob Berzehus (1779—1848), who had earlier discovered cerium, osmium, and iridium, became the first person to separate the element silicon from its compound molecule and then identify it as a new element. Berzehus did this by a two-step process that basically involved heating potassium metal chips with a form of silica (SiF = silicon tetrafluoride) and then separating the resulting mixture of potassium fluoride and silica (SiF + 4K —> 4KF + Si). Today, commercial production of sihcon features a chemical reaction (reduction) between sand (SiO ) and carbon at temperatures over 2,200°C (SiO + 2C + heat— 2CO + Si). [Pg.196]

Potassium was first isolated as a free metal in 1807 by Sir Humphry Davy. It was the first alkali metal to be discovered, produced by electrolysis of potassium carbonate (potash). The element was earlier called Kalium, derived from the Arabic word qili, meaning grass wort, the ash of which was a source of potash. The element derived its symbol K from Kalium. The English name potassium came from potash (pot ash), the carbonate salt of the metal. [Pg.732]

Sodium was first isolated by Sir Humphry Davy in 1807 by electrolysis of caustic soda. In the following year. Gay Lussac and Thenard obtained metallic sodium by chemical reduction of caustic soda with iron at elevated temperatures. Deville, in 1854, prepared the metal by reduction of sodium carbonate and lime with charcoal at a temperature above the boiling point of sodium. Castner, in 1886, improved the chemical reduction process preparing the metal by heating sodium hydroxide with iron carbide at high temperature. Five years later he patented a process based on electrolytic reduction of sodium hydroxide. The first major commercial plant was set up in 1921 with the introduction of Downs cell. [Pg.846]

William Cruickshank in 1787 and Adair Crawford in 1790 independently detected strontium in the mineral strontianite, small quantities of which are associated with calcium and barium minerals. They determined that the strontianite was an entirely new mineral and was different from baryta and other barium minerals known at the time. In 1808, Sir Humphry Davy isolated strontium by electrolysis of a mixture of moist strontium hydroxide or chloride with mercuric oxide, using a mercury cathode. The element was named after the town Strontian in Scotland where the mineral strontianite was found. [Pg.882]

Hydrogen Telluride, H2Te.—In 1808 the observation was made by Ritter 1 that in the electrolysis of water using a tellurium cathode, an unstable tellurium-hydrogen compound was produced, and in repeating this experiment with potassium hydroxide solution as electrolyte, Sir Humphry Davy two years later further observed the formation of a deep red solution. Bcrthelot and Fabre in 1887 first prepared the hydrogen compound in a state approaching purity.2... [Pg.370]

In 1800. William Nicholson and Anthony Carlisle decomposed water into hydrogen and oxygen by an electric current supplied by a voltaic pile. Whereas Volta had pruduced electricity from chemical action these experimenters reversed the process and utilized electricity to produce chemical changes. In 1807. Sir Humphry Davy discovered two new elements, potassium and sodium, by the electrolysis of ihe respective solid hydroxides, utilizing a voltaic pile as the source of electric power. These electrolytic processes were the forerunners of the many industrial electrolytic processes used today to obtain aluminum, chlorine, hydrogen, or oxygen, for example, or in die electroplating of metals such as silver or chromium. [Pg.542]

Metals high in the reactivity series have proved very difficult to isolate. It was not until more recent times, through Sir Humphry Davy s work on electrolysis, that potassium (1807), sodium (1807), calcium (1808) and magnesium (1808) were isolated. Aluminium, the most plentiful reactive metal in the Earth s crust, was not extracted from its ore until 1827, by Friedrich Wohler (p. 74), and the extremely reactive metal rubidium was not isolated until 1861 by Robert Bunsen and Gustav Kirchhoff. [Pg.168]

Humphry Davy used Volta s battery in the early 1800s for electrolysis of salt solutions. He synthesized several pure elements using electrolysis to generate non-spontaneous reactions. [Pg.230]

Potassium and sodium were first isolated within a few days of each other in 1807 by Humphry Davy as products of the electrolysis of molten KOH and NaOH. In 1817, J. A. Arfvedson, a young chemist working with J. J. Berzelius, recognized similarities between the solubilities of compounds of lithium and those of sodium and potassium. The following year, Davy also became the first to isolate lithium, this time by electrolysis of molten Li20. Cesium and rubidium were discovered with the help of the spectroscope in 1860 and 1861, respectively they were named after the colors of the most prominent emission lines (Latin, caesius, sky blue, rubidus, deep red). Francium was not identified until 1939 as a short-lived radioactive isotope from the nuclear decay of actinium. [Pg.249]

Potassium is so active that it never occurs free in nature. It always occurs in compounds, combined with other elements. It was first prepared in pure form in 1807 by English chemist Sir Humphry Davy (1778—1829). Davy used a new method of isolating elements that he had invented called electrolysis. In electrolysis, an electric current is passed through a molten (melted) compound. The electrical current breaks the compound into its elements. [Pg.451]

Sir Humphry Davy isolates sodium by the electrolysis of caustic soda (NaOH) and names the metal. /... [Pg.199]

Sodium is such a reactive metal that preparing it through a chemical process can be dangerous. Sir Humphry Davy first isolated it in 1807 by the electrolysis of molten sodium hydroxide. Today, sodium is made by the electrolysis of molten sodium chloride in a Downs cell, as shown in Figure 17. [Pg.646]

The first element to be prepared by electrolysis was potassium. In 1807, Humphry Davy, then 29 years old, passed an electric current through molten potassium hydroxide (KOH), obtaining liquid potassium at one electrode and water and oxygen at the other. Write equations to represent the processes taking place at the anode and at the cathode. [Pg.744]

The metal (potassium) has been known to exist since Lavoisier, but was first obtained as a substance by Humphry Davy in 1807, He p ep< red it from the hydrate by electrolysis. Gay-Lussac and Tb6nard subsequently found that this substance can be reduced to the metallic state... [Pg.91]

The English name sodium was created by Humphry Davy (1778-1829) because he isolated sodium metal from soda by electrolysis in 1807. Soda was a version of the medieval Latin sodanum, a name for a headache remedy, which in turn probably came from the Arabic Sudd (soda). Because of its similarity to... [Pg.131]


See other pages where Electrolysis Humphry Davy is mentioned: [Pg.1094]    [Pg.1094]    [Pg.313]    [Pg.216]    [Pg.789]    [Pg.694]    [Pg.738]    [Pg.13]    [Pg.55]    [Pg.71]    [Pg.99]    [Pg.104]    [Pg.108]    [Pg.137]    [Pg.152]    [Pg.66]    [Pg.169]    [Pg.138]    [Pg.176]    [Pg.193]    [Pg.122]    [Pg.131]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Davie

Davies

Davis

Davy, Humphry

© 2024 chempedia.info