Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode surface, molecular interfacing

In recent years, advances in experimental capabilities have fueled a great deal of activity in the study of the electrified solid-liquid interface. This has been the subject of a recent workshop and review article [145] discussing structural characterization, interfacial dynamics and electrode materials. The field of surface chemistry has also received significant attention due to many surface-sensitive means to interrogate the molecular processes occurring at the electrode surface. Reviews by Hubbard [146, 147] and others [148] detail the progress. In this and the following section, we present only a brief summary of selected aspects of this field. [Pg.202]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

Interfacial water molecules play important roles in many physical, chemical and biological processes. A molecular-level understanding of the structural arrangement of water molecules at electrode/electrolyte solution interfaces is one of the most important issues in electrochemistry. The presence of oriented water molecules, induced by interactions between water dipoles and electrode and by the strong electric field within the double layer has been proposed [39-41]. It has also been proposed that water molecules are present at electrode surfaces in the form of clusters [42, 43]. Despite the numerous studies on the structure of water at metal electrode surfaces using various techniques such as surface enhanced Raman spectroscopy [44, 45], surface infrared spectroscopy [46, 47[, surface enhanced infrared spectroscopy [7, 8] and X-ray diffraction [48, 49[, the exact nature of the structure of water at an electrode/solution interface is still not fully understood. [Pg.80]

Kohei Uosaki received his B.Eng. and M.Eng. degrees from Osaka University and his Ph.D. in Physical Chemistry from flinders University of South Australia. He vas a Research Chemist at Mitsubishi Petrochemical Co. Ltd. from 1971 to 1978 and a Research Officer at Inorganic Chemistry Laboratory, Oxford University, U.K. bet veen 1978 and 1980 before joining Hokkaido University in 1980 as Assistant Professor in the Department of Chemistry. He vas promoted to Associate Professor in 1981 and Professor in 1990. He is also a Principal Investigator of International Center for Materials Nanoarchitectonics (MANA) Satellite, National Institute for Materials Science (NIMS) since 2008. His scientific interests include photoelectrochemistry of semiconductor electrodes, surface electrochemistry of single crystalline metal electrodes, electrocatalysis, modification of solid surfaces by molecular layers, and non-linear optical spectroscopy at interfaces. [Pg.337]

There are several molecular interfaces for redox enzymes to promote electron transfer at the electrode surface (Fig.6). [Pg.340]

The polypyrrole molecular interface has been electrochemically synthesized between the self-assembled protein molecules and the electrode surface for facilitating the enzyme with electron transfer to the electrode. Figure 9 illustrates the schematic procedure of the electrochemical preparation of the polypyrrole molecular interface. The electrode-bound protein monolayer is transferred in an electrolyte solution containing pyrrole. The electrode potential is controlled at a potential with a potentiostat to initiate the oxidative polymerization of pyrrole. The electrochemical polymerization should be interrupted before the protein monolayer is fully covered by the polypyrrole layer. A postulated electron transfer through the polypyrrole molecular interface is schematically presented in Fig. 10. [Pg.341]

Fig. 10 Schematic illustration of the molecularly interfaced enzyme on the electrode surface... Fig. 10 Schematic illustration of the molecularly interfaced enzyme on the electrode surface...
Due to the incorporation of FDH molecules in the conducting polymer on the surface of the electrode, the prosthetic PQQ electrochemically communicates with the base electrode through the electrode was enhanced significantly in the presence of the role works as an effective molecular interface for FDH on the electrode surface. [Pg.343]

In contrast to the molecular wire of molecular interface, electron mediators are covalently bound to a redox enzyme in such a manner as an electron tunneling pathway is formed within the enzyme molecule. Therefore, enzyme-bound mediators work as molecular interface between an enzyme and an electrode. Degani et al. proposed the intramolecular electron pathway of ferrocene molecules which were covalently bound to glucose oxidase [ 4 ]. However, few fabrication methods have been developed to form a monolayer of mediator-modified enzymes on the electrode surface. We have succeeded in development of a novel preparation of the electron transfer system of mediator-modified enzyme by self-assembly in a porous gold-black electrode as schematically shown in Fig.12 [14]. [Pg.344]

Electron Transfer Type of Dehydrogenase Sensors To fabricate an enzyme sensor for fructose, we found that a molecular interface of polypyrrole was not sufficient to realize high sensitivity and stability. We thus incorporated mediators (ferricyanide and ferrocene) in the enzyme-interface for the effective and the most sensitive detection of fructose in two different ways (l) two step method first, a monolayer FDH was electrochemically adsorbed on the electrode surface by electrostatic interaction, then entrapment of mediator and electro-polymerization of pyrrole in thin membrane was simultaneously performed in a separate solution containing mediator and pyrrole, (2) one-step method co-immobilization of mediator and enzyme and polymerization of pyrrole was simultaneously done in a solution containing enzyme enzyme, mediator and pyrrole as illustrated in Fig.22. [Pg.350]

Several protein assemblies have successfully been fabricated on the solid surfaces sifter the bioinformation transduction. These include the following molecular systems molecularly interfaced redox enzymes on the electrode surfaces, calmodulin / protein hybrides, and ordered antibody array on protein A. These protein assemblies find a wider application in various fields such as biosensors, bioreactors, and intelligent materials. [Pg.364]

In addition to the universal concern for catalytic selectivity, the following reasons could be advanced to argue why an electrochemical scheme would be preferred over a thermal approach (i) There are experimental parameters (pH, solvent, electrolyte, potential) unique only to the electrode-solution interface which can be manipulated to dictate a certain reaction pathway, (ii) The presence of solvent and supporting electrolyte may sufficiently passivate the electrode surface to minimize catalytic fragmentation of starting materials. (iii) Catalyst poisons due to reagent decomposition may form less readily at ambient temperatures, (iv) The chemical behavior of surface intermediates formed in electrolytic solutions can be closely modelled after analogous well-characterized molecular or cluster complexes (1-8). (v)... [Pg.1]

For a specular rod, the speetmm intensity depends on the structure of both the electrolyte and the eleetrode, whereas for a nonspecular rod, the intensity depends only on the electrode surface structure, because in the plane parallel to the interface, the water is not ordered well. It was eoncluded that water is ordered in a layer extending about three molecular diameters (9-10 A) from the electrode. The extent of the order depends on the potential, and the distance between the electrode and the layer of oxygens is shorter at positive than at negative potentials. The latter result can be regarded as evidence of the reorientation of water molecules within... [Pg.27]

Inspired by these Surface Science studies at the gas-solid interface, the field of electrochemical Surface Science ( Surface Electrochemistry ) has developed similar conceptual and experimental approaches to characterize electrochemical surface processes on the molecular level. Single-crystal electrode surfaces inside liquid electrolytes provide electrochemical interfaces of well-controlled structure and composition [2-9]. In addition, novel in situ surface characterization techniques, such as optical spectroscopies, X-ray scattering, and local probe imaging techniques, have become available and helped to understand electrochemical interfaces at the atomic or molecular level [10-18]. Today, Surface electrochemistry represents an important field of research that has recognized the study of chemical bonding at electrochemical interfaces as the basis for an understanding of structure-reactivity relationships and mechanistic reaction pathways. [Pg.398]

Cations and anions with a strong solvation shell retain their solvation shell and thus interact with the electrode surface only through electrostatic forces. Since the interaction is exclusively electrostatic, the amount of these ions at the interface is defined by the electrostatic bias between the sample and the counter electrodes and independent from the chemical properties of the electrode surface non-specific adsorption. Considering the size effect of their hydration shell, these ions are able to approach the electrode to a distance limited by the size of the solvation shell of the ion. The center of these ions at a distance of closest approach defined by the size of the solvation shell is called the outer Helmholtz layer. The electrode surface and the outer Helmholtz layer have charges of equal magnitude but opposite sign, resulting in the formation of an equivalent of a plate condenser on a scale of a molecular layer. Helmholtz proposed such a plate condenser on such a molecular scale for the first time in the middle of the nineteenth century. [Pg.405]

In electrochemistry, potential and current measured by electroanalytical methods provide kinetic and potential energy pictures of electrochemical reactions. Measured current and potential are strongly connected to the molecular scale properties of the electrode surface, solvent molecules and ions. Currents and potentials represent how molecules and atoms are distributed near the interface, how they are bonded on the electrode surface, and how they are solvated in the electrolyte solution. The electrochemical properties are also sensitive to the atomic arrangements of the electrode surface crystallographic orientations and defects. [Pg.448]


See other pages where Electrode surface, molecular interfacing is mentioned: [Pg.37]    [Pg.37]    [Pg.45]    [Pg.187]    [Pg.188]    [Pg.550]    [Pg.111]    [Pg.120]    [Pg.130]    [Pg.141]    [Pg.345]    [Pg.6]    [Pg.488]    [Pg.338]    [Pg.81]    [Pg.322]    [Pg.439]    [Pg.529]    [Pg.303]    [Pg.182]    [Pg.177]    [Pg.2]    [Pg.30]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.50]    [Pg.28]    [Pg.208]    [Pg.230]    [Pg.193]   


SEARCH



Electrode interface

Electrode surface

Enzymes, molecular interfacing electrode surface

Molecular surface

Surface interface

© 2024 chempedia.info