Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode kinetics importance

The distribution of current (local rate of reaction) on an electrode surface is important in many appHcations. When surface overpotentials can also be neglected, the resulting current distribution is called primary. Primary current distributions depend on geometry only and are often highly nonuniform. If electrode kinetics is also considered, Laplace s equation stiU appHes but is subject to different boundary conditions. The resulting current distribution is called a secondary current distribution. Here, for linear kinetics the current distribution is characterized by the Wagner number, Wa, a dimensionless ratio of kinetic to ohmic resistance. [Pg.66]

The authors propose that a major difficulty in interpreting kinetic current flow at the semiconductor-solution interface lies in the inability of experimentalists to prepare interfaces with ideal and measurable properties. In support of this hypothesis, the importance of ideal interfacial properties to metal electrode kinetic studies is briefly reviewed and a set of criteria for ideality of semiconductor-solution interfaces is developed. Finally, the use of semiconducting metal dichalcogenide electrodes as ideal interfaces for subsequent kinetic studies is explored. [Pg.438]

Markov chains theory provides a powerful tool for modeling several important processes in electrochemistry and electrochemical engineering, including electrode kinetics, anodic deposit formation and deposit dissolution processes, electrolyzer and electrochemical reactors performance and even reliability of warning devices and repair of failed cells. The way this can be done using the elegant Markov chains theory is described in lucid manner by Professor Thomas Fahidy in a concise chapter which gives to the reader only the absolutely necessary mathematics and is rich in practical examples. [Pg.8]

Finally, it must be taken into account that the use of large concentrations of supporting electrolyte minimizes the Frumkin effects. This is important in that we can now realize that high concentrations of supporting electrolyte not only minimize either migration or the capacitive currents, but also allow us to adopt the simple electrode kinetics discussed in Section 4. [Pg.47]

In recent years, electrochemical charge transfer processes have received considerable theoretical attention at the quantum mechanical level. These quantal treatments are pivotal in understanding underlying processes of technological importance, such as electrode kinetics, electrocatalysis, corrosion, energy transduction, solar energy conversion, and electron transfer in biological systems. [Pg.71]

In a recent upsurge of studies on electron transfer kinetics, importance was placed on the outer shell solvent continuum, and the solvent was replaced by an effective model potential or a continuum medium with an effective dielectric constant. Studies in which the electronic and molecular structure of the solvent molecules are explicitly considered are still very rare. No further modem quantum mechanical studies were made to advance the original molecular and quantum mechanical approach of Gurney on electron and proton (ion) transfer reactions at an electrode. [Pg.72]

Such an interfacial degeneracy of electron energy levels (quasi-metallization) at semiconductor electrodes also takes place when the Fermi level at the interface is polarized into either the conduction band or the valence band as shown in Fig. 5-42 (Refer to Sec. 2.7.3.) namely, quasi-metallization of the electrode interface results when semiconductor electrodes are polarized to a great extent in either the anodic or the cathodic direction. This quasi-metallization of electrode interfaces is important in dealing with semiconductor electrode kinetics, as is discussed in Chap. 8. It is worth noting that the interfacial quasi-metallization requires the electron transfer to be in the state of equilibrimn between the interface and the interior of semiconductors this may not be realized with wide band gap semiconductors. [Pg.174]

In addition to the possibility of multiple transport paths, our understanding of reaction mechanisms on LSM is further complicated (as with platinum) by pronounced nonstationary behavior in the form of hysteresis of inductive effects. These effects are sometimes manifest as the often-mentioned (but little-documented) phenomenon of burn-in , a term used in development circles to describe the initial improvement (or sometimes decline) of the cathode kinetics after a few hours or days following initial polarization (after which the performance becomes relatively stable). As recently reported by McIntosh et al., this effect can improve the measured impedance of a composite LSMA SZ cathode by a factor of 5 7relative to an unpolarized cathode at OCV." ° Such an effect is important to understand not only because it may lead to insight about the underlying electrode kinetics (and ways to improve them), but also because it challenges the metrics often used to assess and compare relative cell performance. [Pg.584]

The great importance of the Tafel relation—because it is too widely observed to be applicable in electrode kinetics—does not seem to have been appreciated during the time (about 1960-1980) in which Gaussian concepts were frequently used to present a quantal approach to electrode kinetics. Supporting a theoretical view that does not yield what is in effect the first law of electrode kinetics is similar to supporting a theory of gas reactions that does not lead to the exponential dependence of rate on temperature. It represents a remarkable historical aberration in the field. Thus the... [Pg.749]

The structure of the double layer can be altered if there is interaction of concentration gradients, due to chemical reactions or diffusion processes, and the diffuse ionic double layer. These effects may be important in very fast reactions where relaxation techniques are used and high current densities flow through the interface. From the work of Levich, only in very dilute solutions and at electrode potentials far from the pzc are superposition of concentration gradients due to diffuse double layer and diffusion expected [25]. It has been found that, even at high current densities, no difficulties arise in the use of the equilibrium double layer conditions in the analysis of electrode kinetics, as will be discussed in Sect. 3.5. [Pg.18]

In deriving eqn. (80), limitations due to mass transport at the interface were not considered. Strictly speaking, this is not realistic and as the reaction rate increases with overpotential in each direction a variation of the concentrations of reactant and product at the surface operates and concentration polarization becomes more important. Each exponential expression in eqn. (80) must be multiplied by the ratio of surface to bulk concentrations, ci s/ci b. The effect of mass transfer in electrode kinetics has been discussed in Sect. 2.4. [Pg.26]

The importance of double layer structure on electrode kinetics was first shown by Frumkin for the hydrogen evolution reaction on mercury [44]. As a result of the structure of the electrochemical interface, the pre-electrode plane, i.e. the plane where the reactant undergoes electron transfer to become product, is such that the concentration of the reactant ion is different from that in the bulk solution and the corresponding potential difference with respect to the solution, (less than the applied electrode—solution potential difference ([Pg.34]

From inspection of the second exponential in eqn. (105) and Fig. 3, it appears that double layer corrections to the observed electrode kinetic paramenters are more important at low ionic concentration and high ionic charge of the reacting particle and at potentials close to the pzc. [Pg.36]

In electrode kinetic studies, reactant concentrations are, in general, in the millimolar range and double layer contributions for such low ionic concentrations may become very important. If excess of inert or supporting electrolyte is used, the relative variation in the ionic concentration at the double layer due to the electrochemical reaction is at a minimum at high concentration of an inert z z electrolyte, most of the interfacial potential drop corresponds to the Helmholtz inner layer and variations of A02 with electrode potential are small (Fig. 3). In addition, use of supporting electrolyte prevents the migration of electroactive ionic species from becoming important and also reduces the ohmic overpotential. [Pg.36]

The formation or dissolution of a new phase during an electrode reaction such as metal deposition, anodic oxide formation, precipitation of an insoluble salt, etc. involves surface processes other than charge transfer. For example, the incorporation of a deposited metal atom (adatom [146]) into a stable surface lattice site introduces extra hindrance to the flow of electric charge at the electrode—solution interface and therefore the kinetics of these electrocrystallization processes are important in the overall electrode kinetics. For a detailed discussion of this subject, refs. 147—150 are recommended. [Pg.73]

The goal of this chapter is to describe the application of hydrodynamic electrodes to the study of electrode kinetics and the kinetics of electrode and coupled homogeneous reactions. In order to do this, it is important to describe first the mass transport and how to fulfil experimentally the conditions described by the mass transport equations, i.e. electrode construction and operation. [Pg.356]

Current and potential distributions are affected by the geometry of the system and by mass transfer, both of which have been discussed. They are also affected by the electrode kinetics, which will tend to make the current distribution uniform, if it is not so already. Finally, in solutions with a finite resistance, there is an ohmic potential drop (the iR drop) which we minimise by addition of an excess of inert electrolyte. The electrolyte also concentrates the potential difference between the electrode and the solution in the Helmholtz layer, which is important for electrode kinetic studies. Nevertheless, it is not always possible to increase the solution conductivity sufficiently, for example in corrosion studies. It is therefore useful to know how much electrolyte is necessary to be excess and how the double layer affects the electrode kinetics. Additionally, in non-steady-state techniques, the instantaneous current can be large, causing the iR term to be significant. An excellent overview of the problem may be found in Newman s monograph [87]. [Pg.386]

Carbon electrodes exhibit a wide range of electron transfer rates for benchmark redox systems, depending on carbon material and surface history. Two examples are shown in Figure 10.2, which compares two carbon surfaces with very different k° for Fe(CN) /4. In some cases, the variations in electrode kinetics have been particularly important to analytical applications. For example, carbon paste and carbon fiber electrodes have been used to monitor neurotransmitters in living animal brains [5,6]. The determination of catechol transmitters in the presence of relatively large amounts of interferents (e.g., ascorbate) de-... [Pg.297]

The symmetry coefficient a is important in electrode kinetics, but less important for the operation of electrochemical sensors. The discussion of its meaning can be found in standard electrochemical textbooks (e.g. Koryta et al., 1993). Its value typically lies between 0.3 and 0.7. [Pg.108]

At a high cathodic potential (region II), a sharp transition is observed at the potential referred to as ET. The authors demonstrate that the sudden increase of the electrode kinetics could not be attributed to the sole electrochemical reduction of the electrode material, nor to the electrolyte reduction. They conclude that after the transition, the main electrode process is still an oxygen electrode reaction with a major change of mechanism, leading to the onset of an important electrocatalytic effect. This assertion is sustained by the analysis of ... [Pg.108]

As in BV, the MHC model describes the electrode kinetics as a function of three parameters the formal potential, the standard heterogeneous rate constant, and the reorganization energy. Nevertheless, important differences can be observed between the two kinetic models with respect to the variation of the rate constants with the applied potential. Whereas in BV rate constants vary exponentially and... [Pg.37]


See other pages where Electrode kinetics importance is mentioned: [Pg.400]    [Pg.262]    [Pg.654]    [Pg.183]    [Pg.18]    [Pg.10]    [Pg.559]    [Pg.569]    [Pg.573]    [Pg.577]    [Pg.50]    [Pg.355]    [Pg.411]    [Pg.557]    [Pg.691]    [Pg.771]    [Pg.130]    [Pg.297]    [Pg.311]    [Pg.319]    [Pg.100]    [Pg.131]    [Pg.111]    [Pg.209]    [Pg.1059]    [Pg.5]    [Pg.238]    [Pg.240]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Electrode kinetics

© 2024 chempedia.info