Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemistry Membranes cells

Mustain WE, Kepler K, Prakash J. 2007. CoPd, oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochim Acta 52 2102-2108. Nagy Z, You H. 2002. Applications of surface X-ray scattering to electrochemistry problems. Electrochim Acta 47 3037-3055. [Pg.311]

In electrochemistry similar phenomena are observed, for example, with the formation of insoluble films on electrodes or with ion selective channel formation in bilayer lipid membranes or nerve cell membranes (pages 377 and 458). [Pg.384]

Aqueous, alkaline fuel cells, as used by NASA for supplemental power in spacecraft, are intolerant to C02 in the oxidant. The strongly alkaline electrolyte acts as an efficient scrubber for any C02, even down to the ppm level, but the resultant carbonate alters the performance unacceptably. This behavior was recognized as early as the mid 1960 s as a way to control space cabin C02 levels and recover and recycle the chemically bound oxygen. While these devices had been built and operated at bench scale before 1970, the first comprehensive analysis of their electrochemistry was put forth in a series of papers in 1974 [27]. The system comprises a bipolar array of fuel cells through whose cathode chamber COz-containing air is passed. The electrolyte, aqueous Cs2C03, is immobilized in a thin (0.25 0.75 mm) membrane. The electrodes are nickel-based fuel cell electrodes, designed to be hydrophobic with PTFE. [Pg.219]

Broka, K. and Ekdunge, P. 1997. Oxygen and hydrogen permeation properties and water uptake of Nation 117 membrane and recast film for PEM fuel cell. Journal of Applied Electrochemistry 27 117-123. [Pg.172]

Fu, Y. Z., Manthiram, A. and Guiver, M. D. 2006. Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochemistry... [Pg.185]

Influence of PTFE content in the anode DL of a DMFC. Operating conditions 90°C cell temperature anode at ambient pressure cathode at 2 bar pressure methanol concentration of 2 mol dm methanol flow rate of 0.84 cm min. The air flow rate was not specified there was a parallel flow field for both sides. The anode catalyst layer had 13 wt% PTFE, Pt 20 wt%, Ru 10 wt% on Vulcan XC-73R carbon TGP-H-090 with 10 wt% PTFE as cathode DL. The cathode catalyst layer had 13 wt% PTFE, Pt 10 wt% on carbon catalyst with a loading 1 mg cm Pt black with 10 wt% Nafion. The membrane was a Nafion 117. (Reprinted from K. Scott et al. Journal of Applied Electrochemistry 28 (1998) 1389-1397. With permission from Springer.)... [Pg.233]

A. M. Kannan, A. Menghal, and 1. V. Barsukov. Gas diffusion layer using a new type of graphitized nanocarbon PUREBLAGK(R) for proton exchange membrane fuel cells. Electrochemistry Communications 8 (2006) 887-891. [Pg.296]

Until the 1950s, the rare periodic phenomena known in chemistry, such as the reaction of Bray [1], represented laboratory curiosities. Some oscillatory reactions were also known in electrochemistry. The link was made between the cardiac rhythm and electrical oscillators [2]. New examples of oscillatory chemical reactions were later discovered [3, 4]. From a theoretical point of view, the first kinetic model for oscillatory reactions was analyzed by Lotka [5], while similar equations were proposed soon after by Volterra [6] to account for oscillations in predator-prey systems in ecology. The next important advance on biological oscillations came from the experimental and theoretical studies of Hodgkin and Huxley [7], which clarified the physicochemical bases of the action potential in electrically excitable cells. The theory that they developed was later applied [8] to account for sustained oscillations of the membrane potential in these cells. Remarkably, the classic study by Hodgkin and Huxley appeared in the same year as Turing s pioneering analysis of spatial patterns in chemical systems [9]. [Pg.254]

With the increased computational power of today s computers, more detailed simulations are possible. Thus, complex equations such as the Navier—Stokes equation can be solved in multiple dimensions, yielding accurate descriptions of such phenomena as heat and mass transfer and fluid and two-phase flow throughout the fuel cell. The type of models that do this analysis are based on a finite-element framework and are termed CFD models. CFD models are widely available through commercial packages, some of which include an electrochemistry module. As mentioned above, almost all of the CFD models are based on the Bernardi and Verbrugge model. That is to say that the incorporated electrochemical effects stem from their equations, such as their kinetic source terms in the catalyst layers and the use of Schlogl s equation for water transport in the membrane. [Pg.444]

In 1848 du Bois-Reymond [21] suggested that the surfaces of biological formations have a property similar to the electrode of a galvanic cell and that this is the source of bioelectric phenomena observed in damaged tissues. The properties of biological membranes could not, however, be explained before at least the basic electrochemistry of simple models was formulated. The thermodynamic relationships for membrane equilibria were derived by Gibbs in 1875 [29], but because the theory of electrolyte solutions was formulated first by Arrhenius as late as 1887, Gibbs does not mention either ions or electric potentials. [Pg.7]

We summarize what is special with these prototype fast ion conductors with respect to transport and application. With their quasi-molten, partially filled cation sublattice, they can function similar to ion membranes in that they filter the mobile component ions in an applied electric field. In combination with an electron source (electrode), they can serve as component reservoirs. Considering the accuracy with which one can determine the electrical charge (10 s-10 6 A = 10 7 C 10-12mol (Zj = 1)), fast ionic conductors (solid electrolytes) can serve as very precise analytical tools. Solid state electrochemistry can be performed near room temperature, which is a great experimental advantage (e.g., for the study of the Hall-effect [J. Sohege, K. Funke (1984)] or the electrochemical Knudsen cell [N. Birks, H. Rickert (1963)]). The early volumes of the journal Solid State Ionics offer many pertinent applications. [Pg.371]

BIOELECTROCHEMISTRY. Application of the principles and techniques of electrochemistry to biological and medical problems. It includes such surface and interfacial phenomena as the electrical properties of membrane systems and processes, ion adsorption, enzymatic clotting, transmembrane pH and electrical gradients, protein phosphorylation, cells, and tissues. [Pg.203]

Electrochemistry is a very broad subject. Those interested in batteries, fuel cells, corrosion, membrane potentials, and so forth will not satisfy their needs here. [Pg.966]

This volume of Modern Aspects of Electrochemistry is intended to provide an overview of advancements in experimental diagnostics and modeling of polymer electrolyte fuel cells. Chapters by Huang and Reifsnider and Gu et al. provide an in-depth review of the durability issues in PEFCs as well as recent developments in understanding and mitigation of degradation in the polymer membrane and electrocatalyst. [Pg.403]

Major areas of application are in the field of aqueous electrochemistry. The most important application for perfluorinated ionomers is as a membrane separator in chloralkali cells.86 They are also used in reclamation of heavy metals from plant effluents and in regeneration of the streams in the plating and metals industry.85 The resins containing sulfonic acid groups have been used as powerful acid catalysts.87 Perfluorinated ionomers are widely used in worldwide development efforts in the held of fuel cells mainly for automotive applications as PEFC (polymer electrolyte fuel cells).88-93 The subject of fluorinated ionomers is discussed in much more detail in Reference 85. [Pg.158]

The most famous application of electrochemistry to industry in modem times is the synthesis of nylon, (a) What step in the synthesis is electrochemical (b) Is the synthesis in an aqueous solution (c) What part is played by NEt (d) Would the cell concerned have to have a membrane and if so, when (Bockris)... [Pg.119]

Fundamental Research that Underlay Development of this Cell. Three U.S. universities were involved in the work that culminated in manufacture of the proton-exchange membrane by Ballard Power Systems. First, Case-Western Reserve University must be recognized because of the sustained investigations there (Yeager et al., 1961-1983) on the mechanism and catalysis of the reduction of02, the reaction that causes most of the energy losses in the fuel cell. The Electrochemistry of... [Pg.317]

This recital of electrochemistry in the body could go on for some time. However, there are also factors that reminds us of the little we actually know. To imply that we can study electrochemical phenomena in the immense complexity of living systems when all we know is how to explain simple systems like fuel cells and corrosion seems to be the crassest arrogance. Only 50 years ago, bioelectrochemistry was still at the Nemst stage, with membrane potentials and formulas such as (RT/F) In (fli+ou/ i+in) for the potentials observed. The science of biology is a truly gigantic edifice, so big,... [Pg.390]

Sep. 5,1870, Colombo, Ceylon (British Empire), now Sri Lanka - Dec. 16,1956, Canterbury, Kent, UK). Donnan was a British chemist who greatly contributed to the development of colloid chemistry, physical chemistry, and electrochemistry [i—iii]. In different periods of his life, he was working with van t - Hoff, -> Ostwald, F. W., and Ramsay. In electrochemistry, he studied (1911) the electrical potential set-up at a semipermeable membrane between two electrolytes [iv], an effect of great importance in living cells [v], Donnan is mostly remembered for his theory of membrane equilibrium, known as - Donnan equilibrium. This equilibrium results in the formation of - Donnan potential across a membrane. [Pg.166]


See other pages where Electrochemistry Membranes cells is mentioned: [Pg.240]    [Pg.240]    [Pg.20]    [Pg.136]    [Pg.1589]    [Pg.1591]    [Pg.643]    [Pg.129]    [Pg.676]    [Pg.169]    [Pg.406]    [Pg.706]    [Pg.265]    [Pg.585]    [Pg.166]    [Pg.312]    [Pg.184]    [Pg.190]    [Pg.5]    [Pg.125]    [Pg.420]    [Pg.427]    [Pg.4]    [Pg.9]    [Pg.154]    [Pg.15]    [Pg.274]    [Pg.172]    [Pg.341]    [Pg.47]    [Pg.703]    [Pg.720]   
See also in sourсe #XX -- [ Pg.183 , Pg.188 ]




SEARCH



Electrochemistry at the cell membrane-solution interface

Electrochemistry cells

Polymer electrolyte membrane fuel cells electrochemistry

© 2024 chempedia.info