Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrocatalyst supports deposition

Figure 3. SEM micrograph of the carbonized and pulverized PAA after Pd deposition. Inset SEM micrograph of PAA prepared in 0.3 M oxalic acid at 60 V. Reprinted from Zhenyou Wang, Fengping Hu and Pei Kang Shen, Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation, Electrochemistry Communications, 8 (2006) 1764-68, Copyright (2006) with permission from Elsevier. Figure 3. SEM micrograph of the carbonized and pulverized PAA after Pd deposition. Inset SEM micrograph of PAA prepared in 0.3 M oxalic acid at 60 V. Reprinted from Zhenyou Wang, Fengping Hu and Pei Kang Shen, Carbonized porous anodic alumina as electrocatalyst support for alcohol oxidation, Electrochemistry Communications, 8 (2006) 1764-68, Copyright (2006) with permission from Elsevier.
Maillard F, Gloaguen F, Leger JM. Preparation of methanol oxidation electrocatalysts ruthenium deposition on carbon-supported platinum nanoparticles. J Appl Electrochem 2003 33 1-8. [Pg.822]

Titanium dioxide or titania (TiOj) has been considered a promising alternative catalyst support in low-temperature fuel cells because of its excellent corrosion resistance, good stability in acid, and tolerance to high potentials (Diebold, 2003 George et al., 2008). As an electrocatalyst support, TiOj deposited... [Pg.59]

Nano-electrode arrays can be formed through nano-structuring of the electrocatalyst on an inert electrode support. Indeed, if the current of the analyte reduction (oxidation) on a blank electrode is negligible compared to the activity of the electrocatalyst, the former can be considered as an insulator surface. Hence, for the synthesis of nanoelectrode arrays one has to carry out material nano-structuring. Recently, an elegant approach [140] for the electrosynthesis of mesoporous nano-structured surfaces by depositioning different metals (Pt, Pd, Co, Sn) through lyotropic liquid crystalline phases has been proposed [141-143],... [Pg.446]

Prussian blue-based nano-electrode arrays were formed by deposition of the electrocatalyst through lyotropic liquid crystalline [144] or sol templates onto inert electrode supports. Alternatively, nucleation and growth of Prussian blue at early stages results in nano-structured film [145], Whereas Prussian blue is known to be a superior electrocatalyst in hydrogen peroxide reduction, carbon materials used as an electrode support demonstrate only a minor activity. Since the electrochemical reaction on the blank electrode is negligible, the nano-structured electrocatalyst can be considered as a nano-electrode array. [Pg.446]

Bonakdarpour, A., Fleischauer, M. D., Brett, M. J., and Dahn, J. R. Columnar support structures for oxygen reduction electrocatalysts prepared by glancing angle deposition. Applied Catalysis A General 2008 349 110-115. [Pg.99]

Carbon-supported platinum (Pt) and platinum-rathenium (Pt-Ru) alloy are one of the most popular electrocatalysts in polymer electrolyte fuel cells (PEFC). Pt supported on electrically conducting carbons, preferably carbon black, is being increasingly used as an electrocatalyst in fuel cell applications (Parker et al., 2004). Carbon-supported Pt could be prepared at loadings as high as 70 wt.% without a noticeable increase of particle size. Unsupported and carbon-supported nanoparticle Pt-Ru, ,t m catalysts prepared using the surface reductive deposition... [Pg.151]

For a long time, conventional alkaline electrolyzers used Ni as an anode. This metal is relatively inexpensive and a satisfactory electrocatalyst for O2 evolution. With the advent of DSA (a Trade Name for dimensionally stable anodes) in the chlor-alkali industry [41, 42[, it became clear that thermal oxides deposited on Ni were much better electrocatalysts than Ni itself with reduction in overpotential and increased stability. This led to the development of activated anodes. In general, Ni is a support for alkaline solutions and Ti for acidic solutions. The latter, however, poses problems of passivation at the Ti/overlayer interface that can reduce the stability of these anodes [43[. On the other hand, in acid electrolysis, the catalyst is directly pressed against the membrane, which eliminates the problem of support passivation. In addition to improving stability and activity, the way in which dry oxides are prepared (particularly thermal decomposition) develops especially large surface areas that contribute to the optimization of their performance. [Pg.257]

The direct electrochemical deposition methods for the preparation of electrocatalysts allow to localize the catalyst particles on the top surface of the carbon support, as close as possible to the solid polymer electrolyte and does not need heat (oxidative and/or reducing) treatment, as most of the chemical methods do, in order to clean the catalytic particles from surfactant contamination [27,28], This will prevent catalyst sintering due to the agglomeration of nanoparticles under thermal treatment. [Pg.397]

The SECM capacity for rapid screening of an array of catalyst spots makes it a valuable tool for studies of electrocatalysts. This technique was used to screen the arrays of bimetallic or trimetallic catalyst spots with different compositions on a GC support in search of inexpensive and efficient electrocatalytic materials for polymer electrolyte membrane fuel cells (PEMFC) [126]. Each spot contained some binary or ternary combination of Pd, Au, Ag, and Co deposited on a glassy carbon substrate. The electrocatalytic activity of these materials for the ORR in acidic media (0.5 M H2S04) was examined using SECM in a rapidimaging mode. The SECM tip was scanned in the x—y plane over the substrate surface while electrogenerating 02 from H20 at constant current. By scanning... [Pg.220]

The features of the electrode used in this gas-phase electrocatalytic reduction of C02 are close to those used in PEM fuel cells [37, 40, 41] (e.g. a carbon cloth/Pt or Fe on carbon black/Nafion assembled electrode, GDE). The electrocatalysts are Pt or Fe nanoparticles supported on nanocarbon (doped carbon nanotubes), which is then deposited on a conductive carbon cloth to allow the electrical contact and the diffusion of gas phase C02 to the electrocatalyst. The metal nanoparticles are at the contact of Nation, through which protons diffuse. On the metal nanoparticles, the gas-phase C02 reacts with the electrons and protons to be reduced to longer-chain hydrocarbons and alcohols, the relative distributions of which depend on the reaction temperature and type of metal nanoparticles. Isopropanol forms selectively from the electrocatalytic reduction of C02 using a gas diffusion electrode based on an Fe/N carbon nanotube (Fe/N-CNT) [14, 39, 40]. Not only the nature of carbon is relevant, but also the presence of nanocavities, which could favor the consecutive conversion of intermediates with formation of C-C bonds. [Pg.390]

The activities of CNTs have been evaluated by Girishkumar et al. [7] using ex situ EIS. Their study was conducted in a three-compartment electrochemical cell using a GDE electrode (a carbon fibre paper coated with SWCNTs and Pt black as an anode or cathode). Electrophoretic deposition was used to deposit both the commercially available carbon black (CB) for comparison and the SWCNT onto the carbon Toray paper. Commercially available Pt black from Johnson Matthey was used as the catalyst. In both cases, the loading of the electrocatalyst (Pt), the carbon support, and the geometric area of the electrode were kept the same. EIS was conducted in a potentiostatic mode at either an open circuit potential or controlled potentials. [Pg.201]

Model electrodes with a dehned mesoscopic structure can be generated by a variety of means, e.g., electrodeposition, adsorption from colloidal solutions, and vapor deposition and on a variety of substrates. Such electrodes have relatively well-dehned physico-chemical properties that differ signihcantly from those of the bulk phase. The present work analyzes the application of in-situ STM (scanning tunneling microscopy) and ETIR (Eourier Transformed infrared) spectroscopy in determining the mesoscopic structural properties of these electrodes and the potential effect of these properties on the reactivity of the fuel cell model catalysts. Special attention is paid to the structure and catalytic behavior of supported metal clusters, which are seen as model systems for technical electrocatalysts. [Pg.551]

Taylor et al.8 were the first to report an electrochemical method for preparation of MEAs for PEMFCs. In their technique, Pt was electrochemically reduced and deposited at the electrode membrane interface, where it was actually utilized as an electrocatalyst. Nation, which is an ion exchange polymer membrane, is first coated on a noncatalyzed carbon support. The Nafion-coated carbon support is then immersed into a commercial acidic Pt plating solution for electrodeposition. Application of a cathodic potential results in diffusion of platinum cations through the active Nation layer. The migrated platinum species are reduced and form Pt particle at the electrode/membrane interface only on the sites which are both electronically and ionically conductive. The deposition of Pt particles merely at the electrode/membrane interface maximizes the Pt utilization. The Pt particles of 2-3.5 nm and a Pt loading of less than 0.05 mg cm-2 were obtained employing this technique.8 The limitation of this method is the difficulty of the diffusion of platinum... [Pg.119]

Adzic and coworkers proposed a radically new approach in electrocatalysis and catalysis that can alleviate both problems. It is based on a catalyst consisting of only a submonolayer Pt deposited on carbon-supported Ru nanoparticles. The Pt submonolayer on Ru (PtRu2o) electrocatalyst demonstrated higher CO tolerance than commercial catalysts in rotating disk experiments. Tests of the long-term stabihty of the fuel cells detected no loss in perform-... [Pg.33]

The thin-film rotating disk electrode has been used for determination of the catalytic activity. The catalyst was attached to the glassy carbon electrode by careful deposition from aqueous dispersion and no Nafion film was used to cover the deposit. This can significantly improve the tests of supported electrocatalysts. Kinetic parameters for the oxidation of H2 and H2 + CO have been determined by... [Pg.420]


See other pages where Electrocatalyst supports deposition is mentioned: [Pg.254]    [Pg.714]    [Pg.716]    [Pg.185]    [Pg.802]    [Pg.306]    [Pg.73]    [Pg.118]    [Pg.126]    [Pg.336]    [Pg.524]    [Pg.568]    [Pg.186]    [Pg.9]    [Pg.182]    [Pg.232]    [Pg.274]    [Pg.283]    [Pg.308]    [Pg.213]    [Pg.175]    [Pg.534]    [Pg.837]    [Pg.948]    [Pg.182]    [Pg.119]    [Pg.337]    [Pg.228]    [Pg.341]    [Pg.426]    [Pg.333]    [Pg.436]    [Pg.443]    [Pg.445]   
See also in sourсe #XX -- [ Pg.698 , Pg.699 , Pg.700 ]




SEARCH



Electrocatalyst

Electrocatalysts

© 2024 chempedia.info