Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical sedimentation

Anywhere a chemical potential increment or gradient exists, an elementary separation step can occur. Anywhere random flow currents exist, separation is dissipated. Thus random flow currents are parasitic in regions where incremental chemical potential is used for separation. These currents should thus be eliminated, insofar as possible, in regions where electrical, sedimentation, and other continuous (c) fields are generating separations. Likewise, they should not be allowed to transport matter over discontinuous (d) separative interfaces such as phase boundaries or membrane surfaces. However, they are nonparasitic in bulk phases (removed from the separative interface) where only diffusion occurs. Here, in fact, they aid diffusion and speed the approach to equilibrium. This positive role is recognized in the following category of flow. [Pg.150]

Theoretically it is possible that any effective field — electrical, sedimentation, etc. — may be applied to the steric FFF mode. However, the gravitational field represents the most practical means of the utilization of the principle of steric FFF... [Pg.513]

Finally, the external field governs FFF retention. With electrical, sedimentation, and flow FFF, the perpendicular forces can be varied rapidly and in a time-programmed fashion. This gives FFF a certain versatility in adapting to different types of samples. Methods can also be readily optimized for resolution and separation speed. [Pg.453]

Although it is hard to draw a sharp distinction, emulsions and foams are somewhat different from systems normally referred to as colloidal. Thus, whereas ordinary cream is an oil-in-water emulsion, the very fine aqueous suspension of oil droplets that results from the condensation of oily steam is essentially colloidal and is called an oil hydrosol. In this case the oil occupies only a small fraction of the volume of the system, and the particles of oil are small enough that their natural sedimentation rate is so slow that even small thermal convection currents suffice to keep them suspended for a cream, on the other hand, as also is the case for foams, the inner phase constitutes a sizable fraction of the total volume, and the system consists of a network of interfaces that are prevented from collapsing or coalescing by virtue of adsorbed films or electrical repulsions. [Pg.500]

The 2eta potential (Fig. 8) is essentially the potential that can be measured at the surface of shear that forms if the sohd was to be moved relative to the surrounding ionic medium. Techniques for the measurement of the 2eta potentials of particles of various si2es are collectively known as electrokinetic potential measurement methods and include microelectrophoresis, streaming potential, sedimentation potential, and electro osmosis (19). A numerical value for 2eta potential from microelectrophoresis can be obtained to a first approximation from equation 2, where Tf = viscosity of the liquid, e = dielectric constant of the medium within the electrical double layer, = electrophoretic velocity, and E = electric field. [Pg.44]

Water in Industry. Freshwater for industry can often be replaced by saline or brackish water, usually after sedimentation, filtration, and chlorination (electrical or chemical), or other treatments (22). Such treatment is not necessary for the largest user of water, the electric power industry, which in the United States passed through its heat exchangers in 1990 about 40% of the total supply of surface water, a quantity similar to that used for agriculture, and it was 48% of the combined fresh and saline water withdrawals (10). Single stations of 1000 MW may heat as much as 12 Mm /d by as much as 10—15°C. [Pg.238]

There are four related electrokinetic phenomena which are generally defined as follows electrophoresis—the movement of a charged surface (i.e., suspended particle) relative to astationaiy hquid induced by an applied ectrical field, sedimentation potential— the electric field which is crested when charged particles move relative to a stationary hquid, electroosmosis—the movement of a liquid relative to a stationaiy charged surface (i.e., capiUaty wall), and streaming potential—the electric field which is created when liquid is made to flow relative to a stationary charged surface. The effects summarized by Eq. (22-26) form the basis of these electrokinetic phenomena. [Pg.2006]

Modes of Operation There is a close analogy between sedimentation of particles or macromolecules in a gravitational field and their elec trophoretic movement in an electric field. Both types of separation have proved valuable not only for analysis of colloids but also for preparative work, at least in the laboratoiy. Electrophoresis is applicable also for separating mixtures of simple cations or anions in certain cases in which other separating methods are ineffectual. [Pg.2007]

In the North American market, water heaters are almost always made with the cold water inlet and hot water outlet lines coming out of the top of the tank. The hot water outlet opens right into the top of the tank and so draws off the hottest water. The hot water has risen to the top of the tank because of its lower density. The cold water on the inlet side is directed to the bottom of the tank by a plastic dip-tube. In some models the dip-tube is curved or bent at the end to increase the turbulence at the bottom of the tank. This is to keep any sediment from settling on the bottom of the tank. As sediment— usually calcium carbonate or lime—precipitated out of the water by the increased temperature builds up, it will increase the thermal stress on the bottom of a gas-fired water heater and increase the likelihood of tank failure. On electric water heaters the sediment builds up on the surface of the elements, especially if the elements are high-density elements. Low-density elements spread the same amount of power over a larger surface of the element so the temperatures are not as high and lime doesn t build up as quickly. If the lower elements get completely buried in the sediment, the element will likely overheat and burn out. [Pg.1216]

Extremely small particle, typically 10-5 to 10 7 cm in diameter. Colloidal solutions or hydrosols contain colloidal particles that are electrically negatively charged, which contributes to their fine dispersion and the difficulty of sedimentation and clarification. Coagulation is usually carried out by causing the particles to adsorb positively charged ions, such as aluminum from alum. [Pg.725]

In the United States, methane is a major energy source used in many homes for cooking and heating of water and indoor air and water. It is commonly known that some power plants and industries use natural gas as a source of energy for generation of electricity and process heat and that this methane is a fossil fuel obtained from gas wells and transmitted throughout the country by gas pipelines. Most people also know that methane bubbles up from polluted swamps where sedimented plant matter is undergoing decomposition. Because of odors from swamps, and the odor due to natural gas additives, methane is incorrectly considered malodorous. [Pg.338]

On the other hand, the technique of electrochemical sedimentation is known allowing the formation of rather thick BR films by orienting them in the electric field. [Pg.162]

Stability may be inherent or induced. In the latter case, the original system is in a condition of metastable or neutral eouilibrium. External influences which induce instability in a dispersion on standing are changes in temperature, volume, concentration, chemical composition, and sediment volume. Applied external influences consist of shear, introduction of a third component, and compaction of the sediment. Interfacial energy between solid and liquid must be minimized, if a dispersion is to be truly stable. Two complementary stabilizing techniques are ionic and steric protection of the dispersed phase. The most fruitful approach to the prediction of physical stability is by electrical methods. Sediment volumes bear a close relation to repulsion of particles for each other. [Pg.92]

In a practical sense, stability of a dispersion ofttimes is accompanied by a retarded separation of the phases. Unfortunately, a quantitative definition cannot be based on this rate of separation because of the overwhelming influence of density, viscosity, and thermal effects. In short, a kinetic criterion, such as sedimentation rate, is not as likely to portray stability as one based on thermodynamic considerations. In this latter category are sediment volumes, turbidity, consistency, and electrical behavior. [Pg.93]

Various techniques and equipment are available for the measurement of particle size, shape, and volume. These include for microscopy, sieve analysis, sedimentation methods, photon correlation spectroscopy, and the Coulter counter or other electrical sensing devices. The specific surface area of original drug powders can also be assessed using gas adsorption or gas permeability techniques. It should be noted that most particle size measurements are not truly direct. Because the type of equipment used yields different equivalent spherical diameter, which are based on totally different principles, the particle size obtained from one method may or may not be compared with those obtained from other methods. [Pg.278]

A further electrokinetic phenomenon is the inverse of the former according to the Le Chatelier-Brown principle if motion occurs under the influence of an electric field, then an electric field must be formed by motion (in the presence of an electrokinetic potential). During the motion of particles bearing an electrical double layer in an electrolyte solution (e.g. as a result of a gravitational or centrifugal field), a potential difference is formed between the top and the bottom of the solution, called the sedimentation potential. [Pg.254]

The streaming potential (Dorn effect) relates to a movement of liquid that generates electric potential, and electroosmosis occurs when a direct electric potential causes movement of the liquid. The sedimentation potential relates to sedimentation (directed movement) of charged particles that generates electric potential, and electrophoresis occurs when a direct electric potential causes a movement of charged particles. [Pg.700]

The concentration of small ions in the atmosphere is determined by 1) the rate of ion-pair production by the cosmic rays and radioactive decay due to natural radioactive substances, 2) recombination with negative ions, 3) attachment to condensation nuclei, 4) precipitation scavenging, and 5) transport processes including convection, advection, eddy diffusion, sedimentation, and ion migration under the influence of electric fields. A detailed differential equation for the concentration of short-lived Rn-222 daughter ions including these terms as well as those pertaining to the rate of formation of the... [Pg.258]


See other pages where Electrical sedimentation is mentioned: [Pg.160]    [Pg.160]    [Pg.380]    [Pg.160]    [Pg.160]    [Pg.380]    [Pg.69]    [Pg.150]    [Pg.381]    [Pg.384]    [Pg.396]    [Pg.2008]    [Pg.28]    [Pg.25]    [Pg.123]    [Pg.123]    [Pg.268]    [Pg.481]    [Pg.642]    [Pg.303]    [Pg.21]    [Pg.146]    [Pg.211]    [Pg.308]    [Pg.360]    [Pg.627]    [Pg.548]    [Pg.596]    [Pg.288]    [Pg.6]    [Pg.233]    [Pg.271]    [Pg.15]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Gravitational Sedimentation of a Bidisperse Emulsion in an Electric Field

© 2024 chempedia.info