Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomeric deformation

The modulus increase is the logical consequence of strain amplification due to the replacement of a part of elastomeric deformable phase by a particulate rigid filler for a macroscopic deformation e, the local deformation of bridging... [Pg.409]

Because of increased production and the lower cost of raw material, thermoplastic elastomeric materials are a significant and growing part of the total polymers market. World consumption in 1995 is estimated to approach 1,000,000 metric tons (3). However, because the melt to soHd transition is reversible, some properties of thermoplastic elastomers, eg, compression set, solvent resistance, and resistance to deformation at high temperatures, are usually not as good as those of the conventional vulcanized mbbers. AppHcations of thermoplastic elastomers are, therefore, in areas where these properties are less important, eg, footwear, wine insulation, adhesives, polymer blending, and not in areas such as automobile tires. [Pg.11]

Linear-elasticity, of course, is limited to small strains (5% or less). Elastomeric foams can be compressed far more than this. The deformation is still recoverable (and thus elastic) but is non-linear, giving the plateau on Fig. 25.9. It is caused by the elastic... [Pg.273]

It is somewhat difficult conceptually to explain the recoverable high elasticity of these materials in terms of flexible polymer chains cross-linked into an open network structure as commonly envisaged for conventionally vulcanised rubbers. It is probably better to consider the deformation behaviour on a macro, rather than molecular, scale. One such model would envisage a three-dimensional mesh of polypropylene with elastomeric domains embedded within. On application of a stress both the open network of the hard phase and the elastomeric domains will be capable of deformation. On release of the stress, the cross-linked rubbery domains will try to recover their original shape and hence result in recovery from deformation of the blended object. [Pg.303]

Typically, a semicrystalline polymer has an amorphous component which is in the elastomeric (rubbery) temperature range - see Section 8.5.1 - and thus behaves elastically, and a crystalline component which deforms plastically when stressed. Typically, again, the crystalline component strain-hardens intensely this is how some polymer fibres (Section 8.4.5) acquire their extreme strength on drawing. [Pg.319]

The finite size effects in the contact between a spherical lens of polyurethane and a soft flat sheet of crosslinked polyfdimethyl siloxane) (PDMS) has been addressed by Falsafi et al. [37]. They showed that for deformations corresponding to contact diameters larger than the sheet thickness, the compliance of the system was affected by the glass substrate supporting the soft sheet. In order to minimize the finite size effects in the adhesion measurement of small elastomeric lenses, Falsafi et al. [38] and Deruelle et al. [39] used relatively thick elastic sheets to support their samples. [Pg.89]

Micro-mechanical processes that control the adhesion and fracture of elastomeric polymers occur at two different size scales. On the size scale of the chain the failure is by breakage of Van der Waals attraction, chain pull-out or by chain scission. The viscoelastic deformation in which most of the energy is dissipated occurs at a larger size scale but is controlled by the processes that occur on the scale of a chain. The situation is, in principle, very similar to that of glassy polymers except that crack growth rate and temperature dependence of the micromechanical processes are very important. [Pg.236]

A DEA is basically a compliant capacitor where an incompressible, yet highly deformable, dielectric elastomeric material is sandwiched between two complaint electrodes. The electrodes are designed to be able to comply with the deformations of the elastomer and are generally made of a conducting material such as a colloidal carbon in a polymer binder, graphite spray, thickened electrolyte solution, etc. Dielectric elastomer films can be fabricated by conventional... [Pg.279]

Elastomeric polypeptides are a class of very interesting biopolymers and are characterized by mbber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. Here, we focus on two elastomeric proteins and the recombinant polypeptides derived thereof. [Pg.72]

In this chapter, we will review the consequences of solid deformation in the kinetics of the spreading of a liquid on a soft material, in both wetting and dewetting modes. The influence of solid deformation induced by the liquid surface tension will be shown in the case of a liquid drop placed on a soft elastomeric substrate and in the case of an unstable liquid layer dewetting on a soft rubber. The impact of solid deformation on the kinetics of the wetting or dewetting of a liquid will be analyzed theoretically and illustrated by a few concrete examples. The consequences of solid deformation in capillary flow will be also analyzed. [Pg.290]

Both low molecular weight materials [145] and polymers [146,147] can show liquid crystallinity. In the case of polymers, it frequently occurs in very stiff chains such as the Kevlars and other aromatic polyamides. It can also occur with flexible chains, however, and it is these flexible chains in the elastomeric state that are the focus of the present discussion. One reason such liquid-crystalline elastomers are of particular interest is the fact that (i) they can be extensively deformed (as described for elastomers throughout this chapter), (ii) the deformation produces alignment of the chains, and (iii) alignment of the chains is central to the formation of liquid-crystalline phases. Because of fascinating properties related to their novel structures, liquid-crystalline elastomers have been the subject of numerous studies, as described in several detailed reviews [148-150]. The purpose here will be to mention some typical elastomers exhibiting liquid crystallinity, to describe some of their properties, and to provide interpretations of some of these properties in molecular terms. [Pg.365]

In an ensemble of flexible polymer chains, the instantaneous separation of two segments i and j varies from one molecule to another. Ensemble averages such as required in Eq. 2 are obtained by specifying W(r-jj), the probability that segments i and j are separated by ry. In an elastomeric rubber which is not so highly swollen that excluded volume interactions become important, and which is not too greatly deformed, W(r- j) takes a particularly simple form... [Pg.259]

The deformation of polymer chains in stretched and swollen networks can be investigated by SANS, A few such studies have been carried out, and some theoretical results based on Gaussian models of networks have been presented. The possible defects in network formation may invalidate an otherwise well planned experiment, and because of this uncertainty, conclusions based on current experiments must be viewed as tentative. It is also true that theoretical calculations have been restricted thus far to only a few simple models of an elastomeric network. An appropriate method of calculation for trapped entanglements has not been constructed, nor has any calculation of the SANS pattern of a network which is constrained according to the reptation models of de Gennes (24) or Doi-Edwards (25,26) appeared. [Pg.276]

Influence of the ZnCFO contents (3,0 5,0 7,0 phr) on crosslink kinetics of the modelling unfilled rubber mixes from NBR-26 of sulfur, thiuram and peroxide vulcanization of recipe, phr NBR-26 - 100,0 sulfur - 1,5 2-mercaptobenzthiazole - 0,8 stearic acid - 1,5 tetramethylthiuramdisulfide - 3,0 peroximon F-40 - 3,0, is possible to estimate on the data of fig. 7. As it is shown, the increase of ZnCFO concentration results in increase of the maximum torque and, accordingly, crosslink degree of elastomeric compositions, decrease of optimum cure time, that, in turn, causes increase of cure rate, confirmed by counted constants of speed in the main period (k2). The analysis of vulcanizates physical-mechanical properties testifies, that with the increase of ZnCFO contents increase the tensile strength, hardness, resilience elongation at break and residual deformation at compression on 20 %. That is, ZnCFO is effective component of given vulcanization systems, as at equal-mass replacement of known zinc oxide (5,0 phr) the cure rate, the concentration of crosslink bonds are increased and general properties complex of rubber mixes and their vulcanizates is improved. [Pg.197]

Polyurethane multiblock copolymers of the type described by Eqs. 2-197 and 2-198 constitute an important segment of the commercial polyurethane market. The annual global production is about 250 million pounds. These polyurethanes are referred to as thermoplastic polyurethanes (TPUs) (trade names Estane, Texin). They are among a broader group of elastomeric block copolymers referred to as thermoplastic elastomers (TPEs). Crosslinking is a requirement to obtain the resilience associated with a rubber. The presence of a crosslinked network prevents polymer chains from irreversibly slipping past one another on deformation and allows for rapid and complete recovery from deformation. [Pg.142]

Gross mobility of entire chains must be low. The cohesive energy forces between chains of elastomers permit rapid, easy expansion. In its extended state, an elastomeric chain exhibits a high tensile strength, whereas at a low extension it has a low modulus. Polymers with low cross-link density usually meet the desired property requirements. The material after deformation returns to its original shape because of the cross-linking. This property is often referred to as elastic memory. [Pg.29]

An example of the elastomeric component is a combination of multifrmctional and difunctional aliphatic urethane oligomers. Suitable oligomers have relatively high molecular weights and glass transition temperatures (Tg), which enables the adhesive to have elastic properties at room temperature. Its deformability under... [Pg.149]


See other pages where Elastomeric deformation is mentioned: [Pg.159]    [Pg.159]    [Pg.250]    [Pg.321]    [Pg.453]    [Pg.146]    [Pg.159]    [Pg.240]    [Pg.599]    [Pg.264]    [Pg.135]    [Pg.181]    [Pg.184]    [Pg.187]    [Pg.222]    [Pg.228]    [Pg.230]    [Pg.255]    [Pg.595]    [Pg.626]    [Pg.71]    [Pg.312]    [Pg.338]    [Pg.535]    [Pg.583]    [Pg.585]    [Pg.16]    [Pg.63]    [Pg.670]    [Pg.476]    [Pg.100]    [Pg.95]    [Pg.453]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Elastomeric

Elastomerics

© 2024 chempedia.info