Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomer , stabilization

Chemical Reactivity - Reactivity with Water No reaction Reactivity with Common Materials May attack some forms of plastics and elastomers Stability During Transport Stable Neutralizing Agents for Acids and Caustics Not pertinent Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.383]

Toxicology LD50 (IP, mouse) 200 mg/kg LDLo (oral, rat) 500 mg/kg poison by IP route mod. toxic by ing. TSCA listed Hazardous Decomp. Prods. Heated to decomp., emits toxic fumes of NOx Uses Organic synthesis retarder for elastomers stabilizer for smokeless powders Manuf./Distrib. Aldrich http //www.sigma-aldrich.com, Fluka http //www.sigma-aidrich.com. Sigma... [Pg.1507]

Polymer science is a specialized field concerned with the structures, reactions, and applications of polymers. Polymer scientists generate basic knowledge that often leads to various industrial products such as plastics, synthetic fibers, elastomers, stabilizers, colorants, resins, adhesives, coatings, and many others. A mastery of this field is also essential for understanding the structures and functions of polymers found in living things, such as proteins and deoxyribonucleic acid (DNA). [Pg.1507]

Material testing Oxidation induction time Polyurethane elastomers Stabilizers... [Pg.257]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Polymer-based rocket propellants are generally referred to as composite propellants, and often identified by the elastomer used, eg, urethane propellants or carboxy- (CTPB) or hydroxy- (HTPB) terrninated polybutadiene propellants. The cross-linked polymers act as a viscoelastic matrix to provide mechanical strength, and as a fuel to react with the oxidizers present. Ammonium perchlorate and ammonium nitrate are the most common oxidizers used nitramines such as HMX or RDX may be added to react with the fuels and increase the impulse produced. Many other substances may be added including metallic fuels, plasticizers, stabilizers, catalysts, ballistic modifiers, and bonding agents. Typical components are Hsted in Table 1. [Pg.32]

Singk-Screw E.xtruders. These iacorporate iagredients such as antioxidants (qv), stabilizers, pigments, and other fillers iato plastics and elastomers (Fig. [Pg.441]

Nickel dialkyldithiocarbamates stabili2e vulcani2ates of epichlorhydrinethylene oxide against heat aging (178). Nickel dibutyldithiocarbamate [56377-13-0] is used as an oxidation inhibitor in synthetic elastomers. Nickel chelates of substituted acetylacetonates are flame retardants for epoxy resins (179). Nickel dicycloalkyldithiophosphinates have been proposed as flame-retardant additives for polystyrene (180—182) (see Flame retardants Heat stabilizers). [Pg.15]

Most of the phosphate esters are used in the production of hydrauHc fluids (qv), plastic and elastomer additives, flame retardants (qv), oil stabilizers, pesticides (qv), and medicinal intermediates (see Surfactants). Some trialkyl phosphates, OP(OR)2, are outstanding solvents for nitrates, especially (UO2) (N02)2, and therefore are important in uranium processing (see Extraction). [Pg.370]

Organophosphoms compounds, primarily phosphonic acids, are used as sequestrants, scale inhibitors, deflocculants, or ion-control agents in oil wells, cooling-tower waters, and boiler-feed waters. Organophosphates are also used as plasticizers and flame retardants in plastics and elastomers, which accounted for 22% of PCl consumed. Phosphites, in conjunction with Hquid mixed metals, such as calcium—zinc and barium—cadmium heat stabilizers, function as antioxidants and stabilizer adjutants. In 1992, such phosphoms-based chemicals amounted to slightly more than 6% of all such plastic additives and represented 8500 t of phosphoms. Because PVC production is expected to increase, the use of phosphoms additive should increase 3% aimually through 1999. [Pg.383]

Plasma processing technologies ate used for surface treatments and coatings for plastics, elastomers, glasses, metals, ceramics, etc. Such treatments provide better wear characteristics, thermal stability, color, controlled electrical properties, lubricity, abrasion resistance, barrier properties, adhesion promotion, wettability, blood compatibility, and controlled light transmissivity. [Pg.434]

Butadiene—Acrylonitrile Latices. Nitrile latices are copolymers of butadiene and acrylonitrile ia which those copolymerized monomers are the main constituents (see Elastomers, synthetic-nitrile rubber). The latices differ mainly ia ratio of comonomer and stabilizer type. They can be classified as low and medium acrylonitrile (ACN) types. The latter contain 35—40 wt % nitrile mbber, and low types ca 27—29 wt %. [Pg.255]

Aromatic Amines. Antioxidants derived from -phenylenediarnine and diphenylamine are highly effective peroxy radical scavengers. They are more effective than phenoHc antioxidants for the stabilization of easily oxidized organic materials, such as unsaturated elastomers. Because of their intense staining effect, derivatives of -phenylenediamine are used primarily for elastomers containing carbon black (qv). [Pg.225]

Stabilization of Elastomers. Polyunsaturated elastomers are sensitive to oxidation. Stabili2ers are added to the elastomers prior to vulcani2ation to protect the mbber during drying and storage. Nonstaining antioxidants such as butylated hydroxytoluene (1),... [Pg.232]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

AH of the polyether elastomers, like other vulcanizable elastomers, can be compounded with processing aids, fillers, plasticizers, stabilizers, and vulcanizing agents to make useful mbber products. A typical compounding recipe for epichlorohydrin elastomer is as follows ... [Pg.555]

In attempts to further improve the stability of fluorine-containing elastomers Du Pont developed a polymer with no C—H groups. This material is a terpolymer of tetrafluoroethylene, perfluoro(methyl vinyl ether) and, in small amounts, a cure site monomer of undisclosed composition. Marketed as Kalrez in 1975 the polymer withstands air oxidation up to 290-315°C and has an extremely low volume swell in a wide range of solvents, properties unmatched by any other commercial fluoroelastomer. This rubber is, however, very expensive, about 20 times the cost of the FKM rubbers and quoted at 1500/kg in 1990, and production is only of the order of 1 t.p.a. In 1992 Du Pont offered a material costing about 75% as much as Kalrez and marketed as Zalak. Structurally, it differs mainly from Kalrez in the choice of cure-site monomer. [Pg.382]

In addition to the elastomers already described, others, have been produced on an experimental scale. These include the perfluoroalkylenetriazines with their unsurpassed thermal oxidative stability for an elastomer but with many offsetting disadvantages, and polyfthiocarbonyl fluoride). It is probably true to say that material does not have any outstanding desirable property that cannot now be matched by an alternative and commercially available material. [Pg.383]


See other pages where Elastomer , stabilization is mentioned: [Pg.448]    [Pg.449]    [Pg.450]    [Pg.450]    [Pg.458]    [Pg.268]    [Pg.510]    [Pg.336]    [Pg.257]    [Pg.183]    [Pg.373]    [Pg.374]    [Pg.374]    [Pg.380]    [Pg.343]    [Pg.257]    [Pg.448]    [Pg.449]    [Pg.450]    [Pg.450]    [Pg.458]    [Pg.268]    [Pg.510]    [Pg.336]    [Pg.257]    [Pg.183]    [Pg.373]    [Pg.374]    [Pg.374]    [Pg.380]    [Pg.343]    [Pg.257]    [Pg.191]    [Pg.203]    [Pg.33]    [Pg.420]    [Pg.242]    [Pg.49]    [Pg.345]    [Pg.39]    [Pg.160]    [Pg.49]    [Pg.485]    [Pg.509]    [Pg.363]   
See also in sourсe #XX -- [ Pg.302 ]




SEARCH



© 2024 chempedia.info