Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic processes, analysis

The principal techniques for determining the microstmcture of phenoHc resins include mass spectroscopy, proton, and C-nmr spectroscopy, as well as gc, Ic, and gpc. The softening and curing processes of phenoHc resins are effectively studied by using thermal and mechanical techniques, such as tga, dsc, and dynamic mechanical analysis (dma). Infrared (ir) and electron spectroscopy are also employed. [Pg.299]

Simulation of Dynamic Models Linear dynamic models are particularly useful for analyzing control-system behavior. The insight gained through linear analysis is invaluable. However, accurate dynamic process models can involve large sets of nonlinear equations. Analytical solution of these models is not possible. Thus, in these cases, one must turn to simulation approaches to study process dynamics and the effect of process control. Equation (8-3) will be used to illustrate the simulation of nonhnear processes. If dcjdi on the left-hand side of Eq. (8-3) is replaced with its finite difference approximation, one gets ... [Pg.720]

Analysis of neutron data in terms of models that include lipid center-of-mass diffusion in a cylinder has led to estimates of the amplitudes of the lateral and out-of-plane motion and their corresponding diffusion constants. It is important to keep in mind that these diffusion constants are not derived from a Brownian dynamics model and are therefore not comparable to diffusion constants computed from simulations via the Einstein relation. Our comparison in the previous section of the Lorentzian line widths from simulation and neutron data has provided a direct, model-independent assessment of the integrity of the time scales of the dynamic processes predicted by the simulation. We estimate the amplimdes within the cylindrical diffusion model, i.e., the length (twice the out-of-plane amplitude) L and the radius (in-plane amplitude) R of the cylinder, respectively, as follows ... [Pg.488]

Bequette, B. W., Process Dynamics Modeling, Analysis and Simulation, Prentice-Hall, Englewood Cliffs, NJ, 1998. [Pg.538]

A knowledge of the relative magnitude of the time constants involved in dynamic processes is often very useful in the analysis of a given problem, since this can be used to... [Pg.89]

Sample preparation, injection, calibration, and data collection, must be automated for process analysis. Methods used for flow injection analysis (FLA) are also useful for reliable sampling for process LC systems.1 Dynamic dilution is a technique that is used extensively in FIA.13 In this technique, sample from a loop or slot of a valve is diluted as it is transferred to a HPLC injection valve for analysis. As the diluted sample plug passes through the HPLC valve it is switched and the sample is injected onto the HPLC column for separation. The sample transfer time typically is determined with a refractive index detector and valve switching, which can be controlled by an integrator or computer. The transfer time is very reproducible. Calibration is typically done by external standardization using normalization by response factor. Internal standardization has also been used. To detect upsets or for process optimization, absolute numbers are not always needed. An alternative to... [Pg.76]

Analytical investigations usually concern samples which are temporally and locally invariant. This kind of analysis is denoted as bulk analysis (average analysis). On the other hand, analytical investigations can particularly be directed to characterize temporal or local dependences of the composition or structure of samples. One has to perform dynamic analysis or process analysis on the one hand and distribution analysis, local analysis, micro analysis, and nano analysis on the other. [Pg.34]

The few examples of deliberate investigation of dynamic processes as reflected by compression/expansion hysteresis have involved monolayers of fatty acids (Munden and Swarbrick, 1973 Munden et al., 1969), lecithins (Bienkowski and Skolnick, 1974 Cook and Webb, 1966), polymer films (Townsend and Buck, 1988) and monolayers of fatty acids and their sodium sulfate salts on aqueous subphases of alkanolamines (Rosano et al., 1971). A few of these studies determined the amount of hysteresis as a function of the rate of compression and expansion. However, no quantitative analysis of the results was attempted. Historically, dynamic surface tension has been used to study the dynamic response of lung phosphatidylcholine surfactant monolayers to a sinusoidal compression/expansion rate in order to mimic the mechanical contraction and expansion of the lungs. [Pg.62]

Bendor, E. A. An Introduction to Mathematical Modeling. John Wiley, New York (1978). Bequette, B. W. Process Dynamics Modeling, Analysis, and Simulation. Prentice-Hall, Englewood Cliffs, NJ (1998). [Pg.73]

NMR is an incredibly versatile tool that can be used for a wide array of applications, including determination of molecular structure, monitoring of molecular dynamics, chemical analysis, and imaging. NMR has found broad application in the food science and food processing areas (Belton et al., 1993, 1995, 1999 Colquhoun and Goodfellow, 1994 Eads, 1999 Gil et al., 1996 Hills, 1998 O Brien, 1992 Schmidt et al., 1996 Webb et al., 1995, 2001). The ability of NMR to quantify food properties and their spatiotemporal variation in a nondestructive, noninvasive manner is especially useful. In turn, these properties can then be related to the safety, stability, and quality of a food (Eads, 1999). Because food materials are transparent to the radio frequency electromagnetic radiation required in an NMR experiment, NMR can be used to probe virtually any type of food sample, from liquids, such as beverages, oils, and broth, to semisolids, such as cheese, mayonnaise, and bread, to solids, such as flour, powdered drink mixes, and potato chips. [Pg.50]

DMAIC improvement process, 22 174 DM AM hydrogels, 13 738 Dma relaxation spectroscopy, 19 586. See also Dynamic mechanical analysis (DMA)... [Pg.285]

Such ambiguity and also the low structural resolution of the method require that the spectroscopic properties of protein fluorophores and their reactions in electronic excited states be thoroughly studied and characterized in simple model systems. Furthermore, the reliability of the results should increase with the inclusion of this additional information into the analysis and with the comparison of the complementary data. Recently, there has been a tendency not only to study certain fluorescence parameters and to establish their correlation with protein dynamics but also to analyze them jointly, to treat the spectroscopic data multiparametrically, and to construct self-consistent models of the dynamic process which take into account these data as a whole. Fluorescence spectroscopy gives a researcher ample opportunities to combine different parameters determined experimentally and to study their interrelationships (Figure 2.1). This opportunity should be exploited to the fullest. [Pg.66]

The discussion of the mechanisms and models of the relaxation process given in Section 2.5 shows that the application of time-resolved methods produces substantial advantages in accessing dynamical information, but it does not allow the complete pattern of the dynamic process to be obtained. The analysis of the experimental results requires that a particular dynamic model be assumed. Information on the dynamics is obtained from studies of the dependence of emission intensity on two parameters the frequency (or the wavelength) of emission and on time. The function 7(vem, t) may be investigated by two types of potentially equivalent experiments ... [Pg.96]

Lassiter, R. R., and D. W. Hayne. A finite difference model for simulation of dynamic processes in ecosystems, pp. 367-440. In B. C. Patton, Ed. Systems Analysis and Simulation In Ecology. Vol. 1. New York Academic Press. 1971. [Pg.640]

Luminescence, in particular photoluminescence, constitutes a well-established discipline in analytical science where the cited hallmarks include remarkable sensitivity, wide dynamic range and low detection limits (-10under suitable conditions). These collective merits are often umivaled by other optical techniques, and hence its wide adoption in the life sciences for determining trace constituents in biological and environmental samples. Moreover, its fast response, high spatial resolution and remote sensing capabilities make it attractive for real-time analytical problems such as process manufacturing (process analysis or PAT) and field applications. ... [Pg.337]


See other pages where Dynamic processes, analysis is mentioned: [Pg.884]    [Pg.1844]    [Pg.366]    [Pg.330]    [Pg.49]    [Pg.63]    [Pg.914]    [Pg.712]    [Pg.7]    [Pg.66]    [Pg.128]    [Pg.248]    [Pg.367]    [Pg.1]    [Pg.323]    [Pg.498]    [Pg.15]    [Pg.54]    [Pg.90]    [Pg.62]    [Pg.218]    [Pg.15]    [Pg.665]    [Pg.1]    [Pg.207]    [Pg.68]    [Pg.50]    [Pg.53]    [Pg.54]    [Pg.70]    [Pg.218]    [Pg.19]    [Pg.144]   


SEARCH



A3 Dynamic Process Model Analysis

Dynamic analysis

Dynamical process

Polymer processing dynamic mechanical thermal analysis

Process analysis

Process analysis processes

Processing analysis

© 2024 chempedia.info