Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic mechanical analysis determining

Plastics - Thermomechanical analysis (TMA) - Determination of linear thermal expansion coefficient and glass transition temperature Plastics - Thermomechanical analysis (TMA) - Determination of softening temperature Plastics - Determination of dynamic mechanical properties -General principles Plastics - Dynamic mechanical analysis - Determination of glass transition temperature Plastics - Dynamic mechanical analysis - Calibration... [Pg.206]

Dynamic Mechanical Analysis determines the elastic modulus (storage modulus), viscous modulus (loss modulus) and damping coefficient (Tan 5) as a function of temperature. The test specimens dimension was 3 mm X 13 mm x 20 mm and was the same for those used in the Izod impact test but without a notch. The test specimens were clamped between the movable and stationary fixtures, and then enclosed in the thermal chamber. The frequency, amplitude, and a temperature range of25-220°C were set-up for the material. The analyzer applied torsional oscillation to the test sample while slowly moving through the specified temperature range of 25-220°C. [Pg.51]

Other PDMS—sihca-based hybrids have been reported (16,17) and related to the ceramer hybrids (10—12,17). Using differential scanning calorimetry, dynamic mechanical analysis, and saxs, the microstmcture of these PDMS hybrids was determined to be microphase-separated, in that the polysiUcate domains (of ca 3 nm in diameter) behave as network cross-link junctions dispersed within the PDMS oligomer-rich phase. The distance between these... [Pg.328]

Glass-transition temperatures are commonly determined by differential scanning calorimetry or dynamic mechanical analysis. Many reported values have been measured by dilatometric methods however, methods based on the torsional pendulum, strain gauge, and refractivity also give results which are ia good agreement. Vicat temperature and britde poiat yield only approximate transition temperature values but are useful because of the simplicity of measurement. The reported T values for a large number of polymers may be found ia References 5, 6, 12, and 13. [Pg.260]

The principal techniques for determining the microstmcture of phenoHc resins include mass spectroscopy, proton, and C-nmr spectroscopy, as well as gc, Ic, and gpc. The softening and curing processes of phenoHc resins are effectively studied by using thermal and mechanical techniques, such as tga, dsc, and dynamic mechanical analysis (dma). Infrared (ir) and electron spectroscopy are also employed. [Pg.299]

Changes in heat capacity and measurement of T for blends have been used to determine components of copolymers and blends (126—129), although dynamic mechanical analysis has been found to give better resolution. Equations relating T of miscible blends and ratios of components have been developed from dsc techniques, eg, the Fox equation (eq. 1), where f the blend, or is the weight fraction of component 1 or 2,... [Pg.150]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

In dynamic mechanical analysis of plastics, the material is subjected to a sinusoidal variation of stress and the strain is recorded so that 1, 2 and S can be determined. The classical variation of these parameters is illustrated in Fig. 2.55. [Pg.112]

Thermal and thermomechanical analyses44 are very important for determining die upper and lower usage temperature of polymeric materials as well as showing how they behave between diose temperature extremes. An especially useful thermal technique for polyurethanes is dynamic mechanical analysis (DMA).45 Uiis is used to study dynamic viscoelastic properties and measures die ability to... [Pg.241]

Glass transition temperature (Tg), measured by means of dynamic mechanical analysis (DMA) of E-plastomers has been measured in binary blends of iPP and E-plastomer. These studies indicate some depression in the Tg in the binary, but incompatible, blends compared to the Tg of the corresponding neat E-plastomer. This is attributed to thermally induced internal stress resulting from differential volume contraction of the two phases during cooling from the melt. The temperature dependence of the specific volume of the blend components was determined by PVT measurement of temperatures between 30°C and 270°C and extrapolated to the elastomer Tg at —50°C. [Pg.175]

In an NMR analysis of the effects of /-irradiation induced degradation on a specific polyurethane (PU) elastomer system, Maxwell and co-workers [87] used a combination of both H and 13C NMR techniques, and correlated these with mechanical properties derived from dynamic mechanical analysis (DMA). 1H NMR was used to determine spin-echo decay curves for three samples, which consisted of a control and two samples exposed to different levels of /-irradiation in air. These results were deconvoluted into three T2 components that represented T2 values which could be attributed to an interfacial domain between hard and soft segments of the PU, the PU soft segment, and the sol... [Pg.430]

Crosslinked polymer networks formed from multifunctional acrylates are completely insoluble. Consequently, solid-state nuclear magnetic resonance (NMR) spectroscopy becomes an attractive method to determine the degree of crosslinking of such polymers (1-4). Solid-state NMR spectroscopy has been used to study the homopolymerization kinetics of various diacrylates and to distinguish between constrained and unconstrained, or unreacted double bonds in polymers (5,6). Solid-state NMR techniques can also be used to determine the domain sizes of different polymer phases and to determine the presence of microgels within a poly multiacrylate sample (7). The results of solid-state NMR experiments have also been correlated to dynamic mechanical analysis measurements of the glass transition (1,8,9) of various polydiacrylates. [Pg.28]

As the aromatic dicarboxylic acid BB has a much more rigid structure than Cl-PEC, the Tgs of the LCPs derived from BB are supposed to be much higher than those derived from Cl-PEC. Although, in the case of LCPs derived from BB, it is difficult to detect the Tg values by DSC measurements, these values have good correlation with the E"(max) parameters determined by dynamic mechanical analysis (Figure 19.11). According to this study, the Tg of Me-HQ/BB was... [Pg.659]

Dimethacrylate monomers were polymerized by free radical chain reactions to yield crosslinked networks which have dental applications. These networks may resemble ones formed by stepwise polymerization reactions, in having a microstructure in which crosslinked particles are embedded in a much more lightly crosslinked matrix. Consistently, polydimethacrylates were found to have very low values of Tg by reference to changes in modulus of elasticity determined by dynamic mechanical analysis. [Pg.427]

Dynamic mechanical analysis (DMA) or dynamic mechanical thermal analysis (DMTA) provides a method for determining elastic and loss moduli of polymers as a function of temperature, frequency or time, or both [1-13]. Viscoelasticity describes the time-dependent mechanical properties of polymers, which in limiting cases can behave as either elastic solids or viscous liquids (Fig. 23.2). Knowledge of the viscoelastic behavior of polymers and its relation to molecular structure is essential in the understanding of both processing and end-use properties. [Pg.198]

T A a — glass transition temperature determined using dynamic mechanical analysis, K... [Pg.290]

This is due to the fact that the respective measurement procedures for their determination do not take into account the dynamic nature of the attrition process. Therefore, in the present study dynamic mechanical analysis (DMA) was employed. [Pg.181]

Tg values can be determined via either calorimetric, dynamic scanning calorimetry (DSC) or mechanical dynamic mechanical analysis (DMA) measurements. However, since three dimensional highly crosslinked systems have relatively small amounts of molecular motion, the DSC method is not particularly sensitive for Tg determination [131,132]. Fry and Lind have reported that DSC is misleading, as reactive groups are often sufficiently entrapped in the vitrified structure to give spurious results [133]. [Pg.123]

In addition, Seferis and Wedgewood have pointed out the many pitfalls that should be avoided when using dynamic mechanical analysis (DMA) to determine thermal properties in epoxy systems [134]. However, Sanz, et al. have investigated Tg of epoxy systems via DMA for a myriad of epoxy compositions and compiled large amounts of reasonable data using this technique [ 135]. Zukas has done the same using torsional braid analysis (TBA) on many epoxy systems and produced similar conclusions to Sanz [129]. [Pg.123]

For certain clearcoat systems a partial healing of scratches can be observed on the time scale. In literature this is known as the reflow effect [21], Thermal relaxation phenomena may be used for a physical explanation of this effect. In connection with scratch resistance the cross-linking density of clearcoats is also a decisive factor. Meanwhile, dynamic mechanical analysis (DMA) has been established as a method to determine cross-linking density [21-23],... [Pg.43]

The main experimental methodology used is to directly characterize the tensile properties of CNTs/polymer composites by conventional pull tests (e.g. with Instron tensile testers). Similarly, dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA) were also applied to investigate the tensile strength and tensile modulus. With these tensile tests, the ultimate tensile strength, tensile modulus and elongation to break of composites can be determined from the tensile strain-stress curve. [Pg.395]

Dynamic mechanical analysis has been used to study the compatibility of ester lubricants, and stearic acid and its derivatives (403, 420). On the basis of a PVC melt flow test (ASTM D 3364), the effect of lubricants on processing has been determined (313). [Pg.20]

A series of alkyltin thioglycolates is synthesised and their structure and equilibria with alkyltin chlorides is studied by IR analysis. Dynamic mechanical analysis is used to determine their compatibility with PVC. The implications of these results on PVC stabilisation is discussed. 19 refs. USA... [Pg.130]


See other pages where Dynamic mechanical analysis determining is mentioned: [Pg.330]    [Pg.151]    [Pg.49]    [Pg.298]    [Pg.410]    [Pg.68]    [Pg.601]    [Pg.115]    [Pg.200]    [Pg.276]    [Pg.115]    [Pg.200]    [Pg.306]    [Pg.182]    [Pg.132]    [Pg.261]    [Pg.87]    [Pg.508]    [Pg.330]    [Pg.151]    [Pg.175]    [Pg.184]    [Pg.40]    [Pg.355]    [Pg.264]   
See also in sourсe #XX -- [ Pg.114 , Pg.411 ]




SEARCH



Dynamic analysis

Dynamic mechanisms

Dynamical mechanical

Mechanical analysis

Mechanically determined

Mechanism determination

© 2024 chempedia.info