Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Durability aluminum

Strong chemical bonds between the adhesive and adherend help stabilize the interface and increase joint durability. Aluminum joints formed with phenolic adhesives generally exhibit better durability than those with epoxy adhesives. This is partially attributable to strongly interacting phenolic and aliphatic hydroxyl groups that form stable primary chemical bonds across the interface. [Pg.329]

Lightweight and durable, aluminum alloys are used to produce a wide range of products from high-performance engines to soda cans. [Pg.509]

High-pressure water blast has been used for prebond surface treatments to eliminate hazardous materials. The combination of high-pressure water abrasion with subsequent application of an adhesive promoter/primer has been found to provide high strength and durable aluminum bonds. [Pg.242]

Two anodizing surface pretreatments imposed after the acid etching of aluminum have proved to be the best surface for obtaining longest-durability aluminum joints. The pretreatments are referred to based on the type of acid predominant in the respective anodizing baths,... [Pg.261]

By itself not particularly strong or durable, aluminum in combination with other metals becomes one of the most versatile materials available. It does take vast amounts of electrical energy to manufacture, however, and presently this involves the production of both carbon dioxide and the sulfur oxides. Alums are astringents and the sources of beautiful crystals. Alumina, the oxide, comes in a variety of polymorphs used as various abrasives and in beautiful, gem-quality minerals. It is also the product of the extremely exothermic thermite reaction. Boron Neutron Capture Therapy (BNCT) offers a potential treatment against brain tumors and other difficult-to-treat carcinomas of the head and neck. Gallium, indium, and thallium compounds do not have many applications. [Pg.407]

Phenohc resins are the oldest form of synthetic stmctural adhesives. Usage ranges from bonding automobile and other types of brake linings to aerospace apphcations. These adhesives have a reputation for providing the most durable stmctural bonds to aluminum. Because of volatiles, however, and the need for high pressures, the phenohc resins are used less as adhesives than the epoxy resins. [Pg.233]

Pa.ints, Paints (qv) prepared from poly(vinyl acetate) and its copolymers form flexible, durable films with good adhesion to clean surfaces, including wood, plaster, concrete, stone, brick, cinder blocks, asbestos board, asphalt, tar paper, wahboards, aluminum, and galvani2ed iron (147). Adherence is also good on painted surfaces if the surfaces are free from dirt, grease, and mst. Developments in emulsion polymeri2ation for paint latices have been reviewed (148). [Pg.470]

Several types of wax and wax—metal emulsions are water repeUents (30,31). Among these are wax dispersions without metal salts and wax dispersions containing aluminum or zirconium salts. The products that do not contain metal salts are anionic emulsions of wax, used alone or in combination with durable-press resins. Specific compositions are proprietary. Their chief use is on nylon, polyester, and acetate fabrics. [Pg.308]

The adhesion of metal and ink to polymers, and the adhesion of paint and other coatings to metal, are of vital importance in several technologies. Aluminum-to-alu-minum adhesion is employed in the aircraft industry. The strength and durability of an adhesive bond are completely dependent on the manner in which the adhesive compound interacts with the surfaces to which it is supposed to adhere this, in turn, often involves pretreatment of the surfaces to render them more reactive. The nature and extent of this reactivity are functions of the chemical states of the adhering surfaces, states that can be monitored by XPS. [Pg.27]

Rider and Amott were able to produce notable improvements in bond durability in comparison with simple abrasion pre-treatments. In some cases, the pretreatment improved joint durability to the level observed with the phosphoric acid anodizing process. The development of aluminum platelet structure in the outer film region combined with the hydrolytic stability of adhesive bonds made to the epoxy silane appear to be critical in developing the bond durability observed. XPS was particularly useful in determining the composition of fracture surfaces after failure as a function of boiling-water treatment time. A key feature of the treatment is that the adherend surface prepared in the boiling water be treated by the silane solution directly afterwards. Given the adherend is still wet before immersion in silane solution, the potential for atmospheric contamination is avoided. Rider and Amott have previously shown that such exposure is detrimental to bond durability. [Pg.427]

Surface cleaning/etches. As with aluminum and titanium, the most critical test for bonded steel joints is durability in hostile (i.e., humid) environments. The fact that the problem is a serious one for steel was illustrated in a study [117] that compared solvent cleaned (smooth) 1010 cold-rolled steel surfaces with FPL aluminum (microrough) substrates. Although the dry lap-shear strengths were not markedly different, stressed lap-shear joints of steel adherends that were exposed to a humid environment failed in less than 30 days, whereas the aluminum joints lasted for more than 3000 days. [Pg.985]

As polymer chemistry advanced in the 1930s and 1940s, stronger and more durable synthetic adhesives such as early phenol, resorcinol and urea formaldehydes began to supplant natural glues in wood aircraft manufacture. Around this time however, metal began to replace wood as the dominant material for aircraft manufacture. Aerospace adhesives research and development moved on to focus on metals, primarily aluminum, as the substrates of interest. [Pg.1134]

In-service issues. As mentioned previously, many early service failures of bonded structure were due to adherend surface treatments that were unstable in long-term exposure to water. A majority of these problems were resolved by the adoption of surface treatments such as chromic and phosphoric acid anodize for aluminum details. The remaining few were alleviated by the adoption of phosphoric acid anodized honeycomb core and foaming adhesives resistant to water passage. Other service durability issues such as the cracking of brittle potting compound used to seal honeycomb sandwich assemblies, and subsequent delamination, have been minor in scope. [Pg.1170]


See other pages where Durability aluminum is mentioned: [Pg.1145]    [Pg.349]    [Pg.349]    [Pg.1145]    [Pg.49]    [Pg.370]    [Pg.625]    [Pg.805]    [Pg.1145]    [Pg.349]    [Pg.349]    [Pg.1145]    [Pg.49]    [Pg.370]    [Pg.625]    [Pg.805]    [Pg.131]    [Pg.142]    [Pg.178]    [Pg.376]    [Pg.46]    [Pg.565]    [Pg.433]    [Pg.125]    [Pg.280]    [Pg.282]    [Pg.411]    [Pg.439]    [Pg.439]    [Pg.446]    [Pg.446]    [Pg.455]    [Pg.950]    [Pg.963]    [Pg.963]    [Pg.974]    [Pg.978]    [Pg.999]    [Pg.1002]    [Pg.1137]    [Pg.1144]    [Pg.1151]    [Pg.1153]    [Pg.1156]    [Pg.1156]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



© 2024 chempedia.info