Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Droplets, liquid surface

The size of the droplets formed in an aerosol has been examined for a range of conditions important in ICP/MS and can be predicted from an experimentally determined empirical formula (Figure 19.6). Of the two terms in the formula, the first is most important, except at very low relative flow rates. At low relative velocity of liquid and gas, simple droplet formation is observed, but as the relative velocity increases, the stream of liquid begins to flutter and to break apart into long thinner streamlets, which then break into droplets. At even higher relative velocity, the liquid surface is stripped off, and the thin films so-formed are broken down into... [Pg.140]

Both effects can produce coarser atomization. However, the influence of Hquid viscosity on atomization appears to diminish for high Reynolds or Weber numbers. Liquid surface tension appears to be the only parameter independent of the mode of atomization. Mean droplet size increases with increasing surface tension in twin-fluid atomizers (34). is proportional to CJ, where the exponent n varies between 0.25 and 0.5. At high values of Weber number, however, drop size is nearly proportional to surface tension. [Pg.333]

When a liquid is dispersed into droplets the surface area is increased, which enhances the rates of heat and mass transfer. For a particular liquid dispersed at constant concentration in air the MIE varies with approximately the cube of surface average droplet diameter, hence the MIE decreases by a factor of about 8 when the surface average diameter D is halved (A-5-1.4.4). Ease of ignition is greatly enhanced for finely divided mists with D less than about 20 /rm, whose MIE approaches that of the vapor. Below 10 /rm a high flash point liquid mist (tetrahydronaphthalene) was found to behave like vapor while above about 40/rm the droplets tended to burn individually [ 142]. Since liquid mists must partially evaporate and mix with air before they ignite, the ease with which a liquid evaporates also affects MIE (Eigure 5-1.4.4). [Pg.95]

Film Re me In the film regime, there is a thick film of undisturbed air formed adjacent to the liquid surface (e.g., evaporation from the surface of small mercury droplets). In Eq. (7.6), GrxPr < 1, = 0, and Nu is constant. [Pg.422]

Other noncontact AFM methods have also been used to study the structure of water films and droplets [27,28]. Each has its own merits and will not be discussed in detail here. Often, however, many noncontact methods involve an oscillation of the lever in or out of mechanical resonance, which brings the tip too close to the liquid surface to ensure a truly nonperturbative imaging, at least for low-viscosity liquids. A simple technique developed in 1994 in the authors laboratory not only solves most of these problems but in addition provides new information on surface properties. It has been named scanning polarization force microscopy (SPFM) [29-31]. SPFM not only provides the topographic stracture, but allows also the study of local dielectric properties and even molecular orientation of the liquid. The remainder of this paper is devoted to reviewing the use of SPFM for wetting studies. [Pg.247]

Vapour residence time required for the droplets to settle to liquid surface... [Pg.464]

Increasing the vessel diameter will have also changed the vapour velocity and the height above the liquid surface. The liquid separation will still be satisfactory as the velocity, and hence the residence time, is inversely proportional to the diameter squared, whereas the distance the droplets have to fall is directly proportional to the diameter. [Pg.465]

Fig. 15. Experimental photos (left) by Chandra and Avedisian (1991) and simulated images (right) of the spreading droplet on surface at 200 °C. The formation of a hole in the center of the liquid is captured. Fig. 15. Experimental photos (left) by Chandra and Avedisian (1991) and simulated images (right) of the spreading droplet on surface at 200 °C. The formation of a hole in the center of the liquid is captured.
Contact electrification involves the contact and separation of solid-solid, solid-liquid, or liquid-liquid surfaces. Pure gases do not cause charging unless they carry droplets or dust particles. [Pg.22]

The recommended method is from Guidelines for Pressure Relief and Effluent Handling Systems (AIChE-CCPS, 1998). It is an improvement over the method presented in the 7th edition of this Handbook. The procedure involves calculating a terminal velocity for a selected droplet size, then providing enough residence time in the vapor space to allow the droplets to fall from the top of the vessel to the level of liquid collected. Also, the vapor velocity in the separator must not exceed the value above which liquid may Be entrained from the liquid surface in the separator. The tank is treated as a simple horizontal cylinder, neglecting the volume of liquid in the heads. [Pg.88]

In electrostatic atomization, an electrical potential is applied between a liquid to be atomized and an electrode placed in the spray at a certain distance from liquid discharge nozzle. As a result of the mutual repulsion of like charges accumulated on the liquid surface, the surface becomes unstable and disrupts when the pressure due to the electrostatic forces exceeds the surface tension forces of the liquid. Droplets will be generated continuously if the electrical potential is maintained above a critical value consistent with liquid flow rate. Both DC and AC systems have been employed to provide high electrical potentials for generating fine droplets. Many configurations of electrode have been developed, such as hypodermic needles, sintered bronze filters, and cones. [Pg.49]

Atomization generally refers to a process in which a bulk liquid is disintegrated into small drops or droplets by internal and/or external forces as a result of the interaction between the liquid (dispersed phase) and surrounding medium (continuous phase). The term dispersed phase represents the liquid to be atomized and the atomized drops/droplets, whereas the term continuous phase refers to the medium in which the atomization occurs or by which a liquid is atomized. The disintegration or breakup occurs when the disruptive forces exceed the liquid surface tension force. The consolidating... [Pg.121]

Pulsation in a spray is generated by hydrodynamic instabilities and waves on liquid surfaces, even for continuous supply of liquid and air to the atomizer. Dense clusters of droplets are projected into spray chamber at frequencies very similar to those of the liquid surface waves. The clusters interact with small-scale turbulent structures of the air in the core of the spray, and with large-scale structures of the air in the shear and entrainment layers of outer regions of the spray. The phenomenon of cluster formation accounts for the observation of many flame surfaces rather than a single flame in spray combustion. Each flame surrounds a cluster of droplets, and ignition and combustion appear to occur in configurations of flames surrounding droplet clusters rather than individual droplets. [Pg.143]

Taylod205 also conducted mathematical analysis of the generation of ripples by wind blowing over a viscous fluid. Using a relationship between the growth of the amplitude of disturbance waves and the surface stress, Taylor derived a criterion for the instability of waves. In Taylor s instability theory, the disintegration of a liquid sheet/film is visualized as a process in which droplets are detached from the liquid surface with a wave of optimum amplitude. The diameter of the most frequent droplets is then formulated as a function of air velocity over the liquid surface, liquid density, surface tension and viscosity, as well as air density. [Pg.154]

The process parameters influencing droplet sizes may include liquid pressure, flow rate, velocity ratio of air to liquid (mass flow rate ratio of air to liquid), and atomizer geometry and configuration. It has been clearly established that increasing the velocity ratio of air to liquid is the most important practical method of improving atomization)211] In industrial applications, however, the use of mass flow rate ratio of air to liquid has been preferred. As indicated by Chigier)2111 it is difficult to accept that vast quantities of air, that do not come into any direct contact with the liquid surface, have any influence on atomization although mass flow rates of fluids include the effects of velocities. [Pg.253]


See other pages where Droplets, liquid surface is mentioned: [Pg.726]    [Pg.726]    [Pg.2765]    [Pg.145]    [Pg.150]    [Pg.98]    [Pg.104]    [Pg.246]    [Pg.247]    [Pg.269]    [Pg.246]    [Pg.247]    [Pg.269]    [Pg.621]    [Pg.254]    [Pg.483]    [Pg.4]    [Pg.27]    [Pg.29]    [Pg.36]    [Pg.57]    [Pg.122]    [Pg.135]    [Pg.137]    [Pg.146]    [Pg.150]    [Pg.164]    [Pg.165]    [Pg.165]    [Pg.174]    [Pg.184]    [Pg.186]    [Pg.190]    [Pg.194]    [Pg.199]    [Pg.204]    [Pg.227]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Droplet surface

Liquid surface

Liquidous surface

© 2024 chempedia.info