Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation equipment mass transfer

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

Note that the product of the mass-transfer coefficient and the interfacial area is a volumetric coefficient and obviates the need for a value of the interfacial area. While areas for mass transfer on plates have been measured, the experimental contacting equipment cuffered significantly from that used for commercial distillation or gas absorption, and the reported areas are considered unreliable for design purposes. [Pg.1382]

The principal applications of mass transfer are in the fields of distillation, gas absorption and the other separation processes involving mass transfer which are discussed in Volume 2, In particular, mass transfer coefficients and heights of transfer units in distillation, and in gas absorption are discussed in Volume 2,. In this section an account is given of some of the experimental studies of mass transfer in equipment of simple geometry, in order to provide a historical perspective. [Pg.646]

Chapter 3 concerns the dynamic characteristics of stagewise types of equipment, based on the concept of the well-stirred tank. In this, the various types of stirred-tank chemical reactor operation are considered, together with allowance for heat effects, non-ideal flow, control and safety. Also included is the modelling of stagewise mass transfer applications, based on liquid-liquid extraction, gas absorption and distillation. [Pg.707]

The problems relating to mass transfer may be elucidated out by two clear-cut yet different methods one using the concept of equilibrium stages, and the other built on diffusional rate processes. The selection of a method depends on the type of device in which the operation is performed. Distillation (and sometimes also liquid extraction) are carried out in equipment such as mixer settler trains, diffusion batteries, or plate towers which contain a series of discrete processing units, and problems in these spheres are usually solved by equilibrium-stage calculation. Gas absorption and other operations which are performed in packed towers and similar devices are usually dealt with utilizing the concept of a diffusional process. All mass transfer calculations, however, involve a knowledge of the equilibrium relationships between phases. [Pg.321]

As might be expected, the vapour phase may offer the controlling resistance to mass transfer in high pressure distillations. Values for tray efficiencies at elevated pressure are scarce [23, 24]. The prediction of tray efficiency may be approached in several ways. One way is to utilize field performance data taken for the same system in very similar equipment. Unfortunately such data are seldom available. When they are available, and can be judged as accurate and representative, they should be used as a basis for efficiency specification [25], Another way is to utilize laboratory-or pilot-plant efficiency data. For example a small laboratory-Oldershaw tray-column can be used with the same system. Of course, the results must be corrected for vapour-and liquid mixing effects to obtain overall tray efficiencies for large-scale design [26], Another approach is the use of empirical or fundamental mass-transfer models [27-30],... [Pg.374]

The other mixing operations of the list require individual kinds of equipment whose design in some cases is less quantified and is based largely on experience and pilot plant work. Typical equipment for such purposes will be illustrated later in this chapter. Phase mixing equipment which accomplishes primarily mass transfer between phases, such as distillation and extraction towers, also are covered elsewhere. Stirred reactors are discussed in Chapter 17. [Pg.287]

Boyarchuk and Planovskil (B13), 1962 Study of the kinetics of mass transfer in film-type distillation equipment. [Pg.225]

Minimization of construction cost has therefore been a prime objective in the development of solar distillation. Probably the most promising method for its accomplishment is the combining of all three primary elements in a distillation process—i.e., heat supply facility, evaporator, and condenser—into a single piece of very simple equipment. Such a unit is the basin-type solar distillation plant (4). But the simplicity of this equipment ceases with its general form, and over-all operation of so many functions makes the physical processes of energy and mass transfer highly complex. [Pg.159]

Equipment Absorption, stripping, and distillation operations are usually carried out in vertical, cylindrical columns or towers in which devices such as plates or packing elements are placed. The gas and liquid normally flow countercurrently, and the devices serve to provide the contacting and development of interfacial surface through which mass transfer takes place. Background material on this mass transfer process is given in Sec. 5. [Pg.6]

Distillation and gas absorption are the prime and most common gas-liquid mass-transfer operations. Other operations that are often performed in similar equipment include stripping (often considered part of distillation), direct-contact heat transfer, flashing, washing, humidification, and dehumidification. [Pg.26]

In addition, a reactor may perform a function other than reaction alone. Multifunctional reactors may provide both reaction and mass transfer (e.g., reactive distillation, reactive crystallization, reactive membranes, etc.), or reaction and heat transfer. This coupling of functions within the reactor inevitably leads to additional operating constraints on one or the other function. Multifunctional reactors are often discussed in the context of process intensification. The primary driver for multifunctional reactors is functional synergy and equipment cost savings. [Pg.7]

Lehtonen et al. (1998) considered polyesterification of maleic acid with propylene glycol in an experimental batch reactive distillation system. There were two side reactions in addition to the main esterification reaction. The equipment consists of a 4000 ml batch reactor with a one theoretical plate distillation column and a condenser. The reactions took place in the liquid phase of the reactor. By removing the water by distillation, the reaction equilibrium was shifted to the production of more esters. The reaction temperatures were 150-190° C and the catalyst concentrations were varied between 0.01 and 0.1 mol%. The kinetic and mass transfer parameters were estimated via the experiments. These were then used to develop a full-scale dynamic process model for the system. [Pg.272]

However in many heat and mass transfer processes in fluids, condensing or boiling at a solid surface play a decisive role. In thermal power plants water at high pressure is vaporized in the boiler and the steam produced is expanded in a turbine, and then liquified again in a condenser. In compression or absorption plants and heat pumps, boilers and condensers are important pieces of equipment in the plant. In the separation of mixtures, the different composition of vapours in equilibrium with their liquids is used. Boiling and condensing are, therefore, characteristic for many separation processes in chemical engineering. As examples of these types of processes, the evaporation, condensation, distillation, rectification and absorption of a fluid should all be mentioned. [Pg.405]


See other pages where Distillation equipment mass transfer is mentioned: [Pg.19]    [Pg.386]    [Pg.19]    [Pg.1460]    [Pg.542]    [Pg.137]    [Pg.36]    [Pg.656]    [Pg.1111]    [Pg.32]    [Pg.62]    [Pg.171]    [Pg.359]    [Pg.555]    [Pg.60]    [Pg.19]    [Pg.386]    [Pg.137]    [Pg.17]    [Pg.1283]    [Pg.137]    [Pg.175]    [Pg.1693]    [Pg.1730]    [Pg.1730]    [Pg.729]   


SEARCH



Distillation equipment

Mass transfer distillation

Mass transfer equipment

Transfer equipment

© 2024 chempedia.info