Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Theoretical plate/distillation

This is the ASTM D 2892 test method and corresponds to a laboratory technique defined for a distillation column having 15 to 18 theoretical plates and operating with a 5 1 reflux ratio. The test is commonly known as the TBP for True Boiling Point. [Pg.18]

The sample is distilled at predetermined and precisely controlled temperatures under conditions that give a fractionation equivalent to about one theoretical plate. [Pg.19]

Used in virtually all organic chemistry analytical laboratories, gas chromatography has a powerful separation capacity. Using distillation as an analogy, the number of theoretical plates would vary from 100 for packed columns to 10 for 100-meter capillary columns as shown in Figure 2.1. [Pg.20]

D 2892 Petroleum distillation method employing a 15 theoretical plate... [Pg.98]

Otherwise expressed, the number of theoretical plates required for a given separation increases when the reflux ratio is decreased, i.e., when the amount of condensed vapour returned to the colunm is decreased and the amount distilled off becomes greater. [Pg.95]

Packed vs Plate Columns. Relative to plate towers, packed towers are more useful for multipurpose distillations, usually in small (under 0.5 m) towers or for the following specific appHcations severe corrosion environment where some corrosion-resistant materials, such as plastics, ceramics, and certain metaUics, can easily be fabricated into packing but may be difficult to fabricate into plates vacuum operation where a low pressure drop per theoretical plate is a critical requirement high (eg, above 49,000 kg/(hm ) (- 10, 000 lb/(hft )) Hquid rates foaming systems or debottlenecking plate towers having plate spacings that are relatively close, under 0.3 m. [Pg.174]

Favorable Vapoi Liquid Equilibria. The suitabiHty of distiUation as a separation method is strongly dependent on favorable vapor—Hquid equiHbria. The absolute value of the key relative volatiHties direcdy determines the ease and economics of a distillation. The energy requirements and the number of plates required for any given separation increase rapidly as the relative volatiHty becomes lower and approaches unity. For example given an ideal binary mixture having a 50 mol % feed and a distillate and bottoms requirement of 99.8% purity each, the minimum reflux and minimum number of theoretical plates for assumed relative volatiHties of 1.1,1.5, and 4, are... [Pg.175]

In the example, the minimum reflux ratio and minimum number of theoretical plates decreased 14- to 33-fold, respectively, when the relative volatiHty increased from 1.1 to 4. Other distillation systems would have different specific reflux ratios and numbers of theoretical plates, but the trend would be the same. As the relative volatiHty approaches unity, distillation separations rapidly become more cosdy in terms of both capital and operating costs. The relative volatiHty can sometimes be improved through the use of an extraneous solvent that modifies the VLE. Binary azeotropic systems are impossible to separate into pure components in a single column, but the azeotrope can often be broken by an extraneous entrainer (see Distillation, A7EOTROPTC AND EXTRACTIVE). [Pg.175]

Example This equation is obtained in distillation problems, among others, in which the number of theoretical plates is required. If the relative volatility is assumed to be constant, the plates are theoretically perfect, and the molal liquid and vapor rates are constant, then a material balance around the nth plate of the enriching section yields a Riccati difference equation. [Pg.460]

An alternative to TBP distillation is simulated distillation by gas chromatography. As described by Green, Schmauch, and Worman [Anal. Chem., 36, 1512 (1965)] and Worman and Green [Anal. Chem., 37, 1620 (1965)], the method is equivalent to a 100-theoretical-plate TBP distillation, is veiy rapid, reproducible, and easily automated, requires only a small microliter sample, and can better... [Pg.1326]

Use of HETP Data for Absorber Design Distillation design methods (see Sec. 13) normally involve determination of the number of theoretical equihbrium stages or plates N. Thus, when packed towers are employed in distillation appRcations, it is common practice to rate the efficiency of tower packings in terms of the height of packing equivalent to one theoretical plate (HETP). [Pg.1356]

The design of a plate tower for gas-absorption or gas-stripping operations involves many of the same principles employed in distillation calculations, such as the determination of the number of theoretical plates needed to achieve a specified composition change (see Sec. 13). Distillation differs from gas absorption in that it involves the separation of components based on the distribution of the various substances between a gas phase and a hquid phase when all the components are present in Doth phases. In distillation, the new phase is generated From the original feed mixture by vaporization or condensation of the volatile components, and the separation is achieved by introducing reflux to the top of the tower. [Pg.1357]

Figure 14-6 illustrates the graphical method for a three-theoretical-plate system. Note that in gas absorption the operating line is above the equihbrium curve, whereas in distillation this does not happen. In gas stripping, the operating line will be below the equihbrium curve. [Pg.1357]

Methyl trichlorosilane [75-79-6] M 149.5, b 13,7 /101mm, 64.3 /710.8mm, 65.5 /745mm, 66.1 /atm, d 1.263, n 1.4110. If very pure distil before use. Purity checked by Si nmr, 6 in MeCN is 13.14 with respect to Me4Si. Possible contaminants are other silanes which can be removed by fractional distillation through a Stedman column of >72 theoretical plates with total reflux and 0.35% take-off (see p. 441). The apparatus is under N2 at a rate of 12 bubbles/min fed into the line using an Hg manometer to control the pressure. Sensitive to H2O. [J Am Chem Soc 73 4252 7957 J Org Chem 48 3667 7955.]... [Pg.442]

The products are recovered from the reaction mixture by filtration to remove the magnesium chloride, followed by distillation. It is then necessary to distil fractionally the chlorosilanes produced. The fractional distillation is a difficult stage in the process because of the closeness of the boiling points of the chlorosilanes and some by-products (Table 29.1) and 80-100 theoretical plates are necessary to effect satisfactory separation. [Pg.818]

Figure 8-33. Variable reflux ratio at various theoreticeil plates to achieve a specified separation from x kettle to X3 distillate overhead. Note, all reflux ratios shown yield same separation, but with different numbers of theoretical plates/stages D = Distillate F = Kettle Conditions Xq, Vo at equilibrium. Used by permission, Ellerbee, R. W. Chem. Eng. May 28 (1973), p. 110. Figure 8-33. Variable reflux ratio at various theoreticeil plates to achieve a specified separation from x kettle to X3 distillate overhead. Note, all reflux ratios shown yield same separation, but with different numbers of theoretical plates/stages D = Distillate F = Kettle Conditions Xq, Vo at equilibrium. Used by permission, Ellerbee, R. W. Chem. Eng. May 28 (1973), p. 110.
For a constant reflux ratio, the value can be almost any ratio however, this ratio affects the number of theoretical plates and, consequently, actual trays installed in the rectification section to achieve the desired separation. Control of batch distillation is examined in Reference 134. [Pg.49]

Using Figure 8-33 the separation from Xq, initial kettle volatile material to X3 as the distillate of more volatile overhead requires three theoretical plates/stages at total reflux. Using finite reflux R4, and four theoretical plates the same separation can be achieved with infinite theoretical plates and the minimum reflux ratio, Rmin- The values of reflux ratio, R, can be determined from the graph with the operating line equation as,... [Pg.51]

Distill a small quantity each day to obtain relatively pure o-xylene from a mixture of ortho and para xylene, having boiling points of 142.7°C and 138.4°C, respectively. The feed is 15 Ib-mols (about 225 gallons) per batch, at 0.20 mol fraction para. The desired residue product is 0.020 in the kettle, while the distillate is to be 0.400 mol fraction para. A distillation column equivalent to 50 theoretical plate is to be used. [Pg.53]

The hot feed enters the fractionator, which normally contains 30-50 fractionation trays. Steam is introduced at the bottom of the fractionator to strip off light components. The efficiency of separation is a function of the number of theoretical plates of the fractionating tower and the reflux ratio. Reflux is provided by condensing part of the tower overhead vapors. Reflux ratio is the ratio of vapors condensing back to the still to vapors condensing out of the still (distillate). The higher the reflux ratio, the better the separation of the mixture. [Pg.50]

True Boiling Point (TBP) is the distillation separation which has characteristics of 15 different theoretical plates at 5 to 1 reflux ratio. [Pg.362]


See other pages where Theoretical plate/distillation is mentioned: [Pg.392]    [Pg.94]    [Pg.182]    [Pg.92]    [Pg.108]    [Pg.1334]    [Pg.1336]    [Pg.1337]    [Pg.1338]    [Pg.129]    [Pg.9]    [Pg.11]    [Pg.141]    [Pg.150]    [Pg.168]    [Pg.258]    [Pg.423]    [Pg.428]    [Pg.441]    [Pg.491]    [Pg.20]    [Pg.431]    [Pg.48]    [Pg.50]    [Pg.350]    [Pg.370]    [Pg.497]    [Pg.498]    [Pg.17]    [Pg.301]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Distillation plate

Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column)

Theoretical plate

© 2024 chempedia.info