Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissolution phosphate

NMR exchange experiments for the study of surface dissolution species in solution-aged metaphosphate glass has been reported. It has been demonstrated that use of CP allows the resonances of phosphate tetrahedral species within the hydrated dissolution surface to be selectively and cleanly edited from the bulk unaged phosphate species. Incorporating the CP-editing into a 2D RFDR exchange experiment also has allowed the local spatial connectivity between these surface dissolution phosphate species to be directly addressed. [Pg.237]

Apatite dissolution phosphate rock and synthetic hydroxyapatite (HAP). The... [Pg.392]

The purification of the galHum salt solutions is carried out by solvent extraction and/or by ion exchange. The most effective extractants are dialkyl-phosphates in sulfate medium and ethers, ketones (qv), alcohols, and trialkyl-phosphates in chloride medium. Electrorefining, ie, anodic dissolution and simultaneous cathodic deposition, is also used to purify metallic galHum. [Pg.160]

Other Salts. Indium nitrate trihydrate [13770-61 -1], In(N02)3 3H20, is a soluble salt prepared by dissolution of the metal or oxide in nitric acid. Indium phosphate [14693-82-4], InPO, is precipitated by adding phosphate ions to a solution of an indium salt. It is soluble in water. [Pg.81]

The Zinc Phosphating Process. The zinc phosphating reaction involves acid attack on the substrate metal at microanodes and deposition of phosphate crystals at microcathodes (8). Liberation of hydrogen and the formation of phosphate sludge also occur. The equation for the dissolution of iron together with precipitation of dissolved iron as sludge in a nitrite accelerated system is as foUows ... [Pg.222]

Oxo Ion Salts. Salts of 0x0 ions, eg, nitrate, sulfate, perchlorate, hydroxide, iodate, phosphate, and oxalate, are readily obtained from aqueous solution. Thorium nitrate is readily formed by dissolution of thorium hydroxide in nitric acid from which, depending on the pH of solution, crystalline Th(N02)4 5H20 [33088-17 ] or Th(N02)4 4H20 [33088-16-3] can be obtained (23). Thorium nitrate is very soluble in water and in a host of oxygen-containing organic solvents, including alcohols, ethers, esters, and ketones. Hydrated thorium sulfate, Th(S0 2 H20, where n = 9, 8, 6, or 4, is... [Pg.37]

The Ca(Il) coaceatratioa ia blood is closely coatroUed aormal values He betweea 2.1 and 2.6 mmol/L (8.5—10.4 mg/dL) of semm (21). The free calcium ion concentration is near 1.2 mmol/L the rest is chelated with blood proteias or, to a lesser extent, with citrate. It is the free Ca(Il) ia the semm that determines the calcium balance with the tissues. The mineral phase of bone is essentially ia chemical equiUbrium with calcium and phosphate ions present ia blood semm, and bone cells can easily promote either the deposition or dissolution of the mineral phase by localized changes ia pH or chelating... [Pg.408]

Other Ceramic Calcium Phosphate Materials. Other ceramic calcium phosphate materials for repairing bony defect iaclude p-tricalcium phosphate (P-TCP) [7758-87-4], P-Ca2(PO, and biphasic calcium phosphate (BCP) ceramics which consist of both P-TCP and HA. Unlike ceramic HA, P-TCP resorbs ia the tissue (293). The in vivo dissolution of BCP ceramic implants was shown (296) to iacrease with increasing P-TCP/HA ratio ia the implants. Both P-TCP and BCP can lead to new bone growth to various extents depending on the appHcations and the type of materials used (293,296). [Pg.495]

Ln(II) in LnFj Ln(II) were determined after samples dissolution in H PO in the presence of a titrated solution of NFI VO, which excess was titrated with the Fe(II) salt. It was found that dissolution of the materials based on CeF CeFj in H PO does not change the oxidation state of cerium, thus phosphate complexes of Ce(III, IV) can be used for quantitative spectrophotometric determination of cerium valence forms. The contents of Ln(II, III) in Ln S LnS may be counted from results of the determination of total sulfur (determined gravimetric ally in BaSO form) and sum of the reducers - S and Ln(II) (determined by iodometric method). [Pg.164]

XPS was used to determine the surface composition of the anodized aluminum substrate during exposure to warm, moist environments. The information obtained was used to construct surface behavior diagrams that showed that hydration of the surface involved three steps [38]. Step one, which was reversible, consisted of adsorption of water onto the AIPO4 monolayer. The second step, which was rate-controlling, involves dissolution of the phosphate followed by rapid hydration... [Pg.281]

Pure tin is completely resistant to distilled water, hot or cold. Local corrosion occurs in salt solutions which do not form insoluble compounds with stannous ions (e.g. chloride, bromide, sulphate, nitrate) but is unlikely in solutions giving stable precipitates (e.g. borate, mono-hydrogen phosphate, bicarbonate, iodide) . In all solutions, oxide film growth occurs and the potential of the metal rises. Any local dissolution may not begin for several days but, once it has begun, it will continue, its presence being manifested... [Pg.804]

The solution of iron represented in equation 15.1 takes place at local anodes of the steel being processed, while discharge of hydrogen ions with simultaneous dissociation and deposition of the metal phosphate takes place at the local cathodes. Thus factors which favour the cathode process will accelerate coating formation and conversely factors favouring the dissolution of iron will hinder the process. [Pg.708]

Using this preparation, a 500 mg oxalate calculus obtained surgically was almost completely dissolved within 60 hours. When the solution pH was lowered to 6.0, the dissolution efficiency dropped appreciably and 200 mg of the stone remained undissolved after 60 hours. In another experiment a 5 % EDTA solution adjusted to pH 6.0 was applied in vitro to a phosphate kidney calculus (400 mg) which dissolved almost completely in 30 hours. However, clinical experience indicates that EDTA is still far from ideal for dissolving oxalate and phosphate calculi because of the very long time required for dissolution of the calculi. [Pg.133]

Dissolution of Calculi Model. Dissolved Ions from Ca3(PCf)2. Dissolution of calcium phosphate by macrocyclic polyamines proceeds at pH 7, which is established by measuring the freed cation concentration as well as the freed anion concentration with respect to the control values (Table 7). The molar ratio of [Ca2 + ] to [P04 ]... [Pg.134]

EDTA, leading to a postulate that more than one equivalent of Ca2+ can be captured by X (e.g. one Ca2+ sequestered by the three amines and the three carboxylates and another Ca2 + by the remaining half the donor groups), as the Dreiding model suggests. The fact that there was no interaction at neutral pH of X with phosphate or oxalate anions was separately confirmed. Thus, the dissolution of Ca3(P04)2 and Ca(C204) is entirely due to the cation complexation mechanism. [Pg.137]

Dissolution of Human Urinary Calculi in Vitro. Five human urinary calculi containing various proportions of Ca3(P04)2, Ca(C204), CaC03, and MgNH4(P04) were subjected to similar dissolution tests at pH 7 (Table 11). The same dissolution patterns as those of the model phosphate and oxalate calculi are found. That is, for phosphate calculi no. 1-4, X is more effective than [18]aneN6 or EDTA and for oxalate calculus no. 5, EDTA is best. [Pg.137]

The method can be applied to the determination of phosphorus in a wide variety of materials, e.g. phosphate rock, phosphatic fertilisers and metals, and is suitable for use in conjunction with the oxygen-flask procedure (Section 3.31). In all cases it is essential to ensure that the material is so treated that the phosphorus is converted to orthophosphate this may usually be done by dissolution in an oxidising medium such as concentrated nitric acid or in 60 per cent perchloric acid. [Pg.305]

Calcium/magnesium carbonate/hydroxide and calcium phosphate can be removed by using 5 to 15% hydrochloric acid at 140 to 150 °F, by recirculating tetrasodium EDTA at 200 to 300 °F, or by 7 to 10% sulfamic acid at 140 to 150 °F. The temperature may need to be a little higher to start the dissolution process. [Pg.646]

Inorganic reactions in the soil interstitial waters also influence dissolved P concentrations. These reactions include the dissolution or precipitation of P-containing minerals or the adsorption and desorption of P onto and from mineral surfaces. As discussed above, the inorganic reactivity of phosphate is strongly dependent on pH. In alkaline systems, apatite solubility should limit groundwater phosphate whereas in acidic soils, aluminum phosphates should dominate. Adsorption of phosphate onto mineral surfaces, such as iron or aluminum oxyhydroxides and clays, is favored by low solution pH and may influence soil interstitial water concentrations. Phosphorus will be exchanged between organic materials, soil inter-... [Pg.365]

Jonge, V. N. de and Villerius, L. A. (1989). Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnol. Oceanogr. 34, 332-340. [Pg.375]

Figure 48-12. Schematic illustration of some aspects of the role of the osteoclast in bone resorption. Lysosomal enzymes and hydrogen ions are released into the confined microenvironment created by the attachment between bone matrix and the peripheral clear zone of the osteoclast. The acidification of this confined space facilitates the dissolution of calcium phosphate from bone and is the optimal pH for the activity of lysosomal hydrolases. Bone matrix is thus removed, and the products of bone resorption are taken up into the cytoplasm of the osteoclast, probably digested further, and transferred into capillaries. The chemical equation shown in the figure refers to the action of carbonic anhydrase II, described in the text. (Reproduced, with permission, from Jun-queira LC, Carneiro J BasicHistology. Text Atlas, 10th ed. McGraw-Hill, 2003.)... Figure 48-12. Schematic illustration of some aspects of the role of the osteoclast in bone resorption. Lysosomal enzymes and hydrogen ions are released into the confined microenvironment created by the attachment between bone matrix and the peripheral clear zone of the osteoclast. The acidification of this confined space facilitates the dissolution of calcium phosphate from bone and is the optimal pH for the activity of lysosomal hydrolases. Bone matrix is thus removed, and the products of bone resorption are taken up into the cytoplasm of the osteoclast, probably digested further, and transferred into capillaries. The chemical equation shown in the figure refers to the action of carbonic anhydrase II, described in the text. (Reproduced, with permission, from Jun-queira LC, Carneiro J BasicHistology. Text Atlas, 10th ed. McGraw-Hill, 2003.)...
More important is the behaviour of these cements in solutions approximating to conditions in the mouth. Calcium does not affect the stability, but phosphate, also a constituent of saliva, increases dissolution (Peters et al, 1972 Peters, Jackson Smith, 1974). [Pg.110]


See other pages where Dissolution phosphate is mentioned: [Pg.476]    [Pg.476]    [Pg.241]    [Pg.222]    [Pg.23]    [Pg.462]    [Pg.337]    [Pg.343]    [Pg.134]    [Pg.328]    [Pg.287]    [Pg.957]    [Pg.975]    [Pg.137]    [Pg.463]    [Pg.1163]    [Pg.1187]    [Pg.1191]    [Pg.786]    [Pg.819]    [Pg.882]    [Pg.134]    [Pg.135]    [Pg.137]    [Pg.242]    [Pg.53]    [Pg.92]    [Pg.234]    [Pg.104]   
See also in sourсe #XX -- [ Pg.18 , Pg.19 ]




SEARCH



Hydroxyapatite phosphate, dissolution

Minerals) dissolution, phosphate

Phosphate dissolution/precipitation

© 2024 chempedia.info