Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersability experimental methods

Foam Fractionation. An interesting experimental method that has been performed for wastewater treatment of disperse dyes is foam fractionation (88). This method is based on the phenomenon that surface-active solutes collect at gas—Hquid iaterfaces. The results were 86—96% color removal from a brown disperse dye solution and 75% color removal from a textile mill wastewater. Unfortunately, the necessary chemical costs make this method relatively expensive (see Foams). [Pg.382]

In recent years there is a growing interest in the study of vibrational properties of both clean and adsorbate covered surfaces of metals. For several years two complementary experimental methods have been used to measure the dispersion relations of surface phonons on different crystal faces. These are the scattering of thermal helium beams" and the high-resolution electron-energy-loss-spectroscopy. ... [Pg.151]

There have been remarkably few reviews of the chemistry of decompositions and interactions of solids. The present account is specifically concerned with the kinetic characteristics described in the literature for the reactions of many and diverse compounds. Coverage necessarily includes references to a variety of relevant and closely related topics, such as the background theory of the subject, proposed mechanistic interpretations of observations, experimental methods with their shortcomings and errors, etc. In a survey of acceptable length, however, it is clearly impossible to explore in depth all features of all reports concerned with the reactivity and reactions of all solids. We believe that there is a need for separate and more detailed reviews of topics referred to here briefly. The value of individual publications in the field, which continue to appear in a not inconsiderable flow, would undoubtedly be enhanced by their discussion in the widest context. Systematic presentation and constructive comparisons of observations and reports, which are at present widely dispersed, would be expected to produce significant correlations and conclusions. Useful advances in the subject are just as likely to emerge in the form of generalizations discerned in the wealth of published material as from further individual studies of specific systems. Perhaps potential reviewers have been deterred by the combination of the formidable volume and the extensive dispersal of the information now available. [Pg.283]

Pristine CNTs are chemically inert and metal nanoparticles cannot be attached [111]. Hence, research is focused on the functionalization of CNTs in order to incorporate oxygen groups on their surface that will increase their hydrophilicity and improve the catalyst support interaction (see Chapter 3) [111]. These experimental methods include impregnation [113,114], ultrasound [115], acid treatment (such as H2S04) [116— 119], polyol processing [120,121], ion-exchange [122,123] and electrochemical deposition [120,124,125]. Acid-functionalized CNTs provide better dispersion and distribution of the catalysts nanoparticles [117-120],... [Pg.370]

The above example demonstrates that treatment of the basic data by different numerical methods can produce distinctly different results. The discrepancy between the results in this case is, in part, due to the inadequacy of the data provided the data points are too few in number and their precision is poor. A lesson to be drawn from this example is that tracer experiments set up with the intention of measuring dispersion coefficients accurately need to be very carefully designed. As an alternative to the pulse injection method considered here, it is possible to introduce the tracer as a continuous sinusoidal concentration wave (Fig. 2.2c), the amplitude and frequency of which can be adjusted. Also there is a variety of different ways of numerically treating the data from either pulse or sinusoidal injection so that more weight is given to the most accurate and reliable of the data points. There has been extensive research to determine the best experimental method to adopt in particular circumstances 7 " . [Pg.93]

Demokritou, P., Yang, C., Chen, Q. et al. (2002) An experimental method for contaminant dispersal characterization in large industrial buildings for indoor air quality (IAQ) applications. Building and Environment, 37 (3), 305-12. [Pg.97]

A technology, which has allowed producing of fullerene molecular-colloidal water solutions (FWS), has made new step for the biological applications of fullerenes. Such technology is now available [4], and CeoFWS produced by means of it is highly stable (8-24 months and longer) and finely dispersed without any stabilizers. The fact that this colloid consists of individual molecules of Ceo and the water only has been proved earlier by means of different experimental methods. [Pg.152]

Moodie 1981 To study the effectiveness of different nozzle sizes and arrangements in full-scale water-spray barriers to disperse heavy-gas vapor clouds. Amount of air entrained by a water-spray barrier may be dependent on nozzle inclination. Results demonstrated the effectiveness of the basic arrangement tested and the experimental method of assessment. [Pg.59]

Eli Ruckenstein For surfactant aggregation there are both theories and experiments that address the problem of relaxation to equilibrium. The experimental methods have been borrowed from rapid-reaction kinetics. The first theory was developed by Aniansson and Wall (J. Phys. Chem. 1974). I am not familiar with experiments regarding relaxation in concentrated dispersions. For a sufficiently dilute colloidal solution, such experiments and theories probably could be carried out. [Pg.199]

While transient photocurrent and photoinduced discharge techniques are the conventional methods for measuring photogeneration efficiencies, these cannot be readily employed in the presence of trapping. A further limitation is that it is difficult to separate the field dependence of the photogeneration process from field dependencies associated with an injection or interfacial process (Seki, 1970, 1972a). As such, it is difficult to apply the method to dispersions or two-phase materials. Experimental methods that may avoid these limitations are... [Pg.143]

Adaptation of existing experimental methods and theories, and development of new ones, to study (usually at reservoir conditions) the key phase, dispersion, and interfacial properties that control dispersion-based mobility processes, as determined from pore-level mechanisms and from other studies (D. H. Smith, Southwest American Chemical Society Meeting, Houston, November 19-21, 1986). [Pg.12]

The experimental method used to determine the chirality or absolute structure of a molecule or crystal structure involves the use of the anomalous dispersion of X-rays by one or more atoms in the structure. We will now describe this effect and how Bijvoet used it to determine the absolute configuration of (-l-)-tartaric acid from the differences in the intensities of the hkl and iM Bragg reflections. [Pg.592]

Knowledge of interfacial areas, drop size distributions, and dispersed phase coalescence rates is essential for accurate description and prediction of mass transfer and chemical reaction rates in liquid-liquid dispersions. In this section, a review of the experimental methods and techniques developed for describing and measuring interfacial area, drop size distributions, and coalescence rates will be given in addition, summaries of important results and correlations are presented. [Pg.221]

Metal Dispersion by Chemisorption and Titration Selective Chemisorption. - This is the most frequently used technique for determining the metal area in a supported catalyst and depends on finding conditions under which the gas will chemisorb to monolayer coverage on the metal but to a negligible extent on the support. Various experimental methods, conditions, and adsorbates have been tried and studies made of catalyst pre-treatment and adsorption stoicheiometry, viz, the (surface metal atom)/(gas adsorbate) ratio, written here as Pts/H, Bh jQO,etc., and reviews to about 1975 are available. A summary is given in Table IV of ref. 2 of methods used to confirm the various adsorption stoicheiometries proposed, sometimes from infrared studies. These include chemisorption on metal powders of known BET area or, more satisfactorily, one of the instrumental methods reviewed in Section 3 for the determination of crystallite size distributions. For many purposes, a relative measurement of metal dispersion is sufficient, conveniently expressed as the ratio (number of atoms or molecules adsorbed)/(totfl/ number of metal atoms in the catalyst), e.g., H/Ptt. [Pg.33]

Schiavello M., Augugliaro V. and Palmisano E. (1991), An experimental method for the determination of the photon flow reflected and absorbed by aqueous dispersions containing polycrystalline solids in heterogeneous photocatalysis , J. Catal. 127, 332-341. [Pg.389]

Clearly, both vibrational and UV-visible spectroscopy also play an important role in materials chemistry, and are well described in other texts. The principles involved in carrying out these experiments on solids rather than in solution are similar, but often experimental methods vary. For example, an IR spectrum of a zeolite would be carried out by dispersing the solid in a matrix of potassium bromide and pressing into a disk, rather than in solution. Typically, a UV-visible spectrum of a solid would be carried out in diffuse reflectance mode, where the solid is dispersed in a white matrix (such as barium carbonate) and the UV light is reflected off the surface rather than passing through a solution. [Pg.77]

The above terminology ( inert vs. specific ) was adopted for studies of the surface charging of colloids. Different experimental methods are used and different quantities are measurable for colloids than for the Hg electrode, but the model of an electrical double layer is analogous. Studies of pH-dependent surface charging of colloids are usually carried out in the presence of an inert electrolyte and an acid or base (used to adjust the pH) with an anion or cation in common with the inert electrolyte. Products of dissolution of the solid are also present in solution at low concentration (we are only interested in sparingly soluble solids), but are ignored in most studies. Sometimes, the concentration of dissolution products is measured, and very occasionally the concentration of dissolution products (which are water-soluble salts) is controlled by addition of these salts to the dispersion. The effect of addition of Al(iii) salt on the potential of alumina was studied in [35]. At the lEP, the solubility of Al species is low thus, the lEP was not very different from that in a 1-1 electrolyte. The solubility problem is discussed in more detail in Section 1.6. [Pg.12]

Experimental methods and techniques for catalyst manufacture are particularly important because chemical composition is not enough by itself to determine activity. The physical properties of surface area, pore size, particle size, and particle structure also have an influence. These properties are determined to a large extent by the preparation procedure. To begin with, a distinction should be drawn between preparations in which the entire material constitutes the catalyst and those in which the active ingredient is dispersed on a support or carrier having a large surface area. The first kind of catalyst is usually made by precipitation, gel formation, or simple mixing of the components. [Pg.320]

In this chapter, the theories as well as the experimental justification for the mechanism of stabilization and destabilization of colloidal dispersions are outlined. Interacting forces between colloidal particles are analyzed and an overview of experimental methods for assessing the dispersion and relevant properties is given. The stabilization and flocculation of dispersions in the presence of surfactants and polymers is discussed in the last two sections. [Pg.394]

A quasi steady-state solution for the tracer distribution in a soilpolutnn has been developed for the inlet boundary concentration being a constant plus a Sinusoidal component. Then an unsteady state solution for tracer distribution a soil column was developed for the same inlet boundary condition as above. The unsteady-state tracer concentration distribution applies to the section of a soil column that still remembers the initial condition. The two solutions may be applicable to those planning experiments to measure parameters such as the dispersion coefficient from tracer tests. A sinusoidal loading of tracer at the inlet boundary may enable one to obtain repeated data traces at the column outlet as part of an extended experiment. Continued collection of tracer concentration vs. time data at the column outlet over a number of periods would enable one to collect data from repeated experiments, for each period of the sine wave would represent another experiment. This should enable one to obtain more replicates of data to improve statistical estimates of the dispersion coefficient than could be obtained by experimental methods that use a slug loading or a step change of concentration at the column inleL"... [Pg.181]


See other pages where Dispersability experimental methods is mentioned: [Pg.1]    [Pg.1]    [Pg.125]    [Pg.233]    [Pg.20]    [Pg.226]    [Pg.234]    [Pg.210]    [Pg.14]    [Pg.1]    [Pg.2]    [Pg.57]    [Pg.129]    [Pg.106]    [Pg.226]    [Pg.3146]    [Pg.1733]    [Pg.845]    [Pg.226]    [Pg.1728]    [Pg.275]    [Pg.132]    [Pg.278]    [Pg.540]    [Pg.140]    [Pg.339]    [Pg.65]    [Pg.139]    [Pg.42]    [Pg.428]   


SEARCH



Dispersion experimental

Dispersion methods

Dispersive methods

Experimental methods Taylor dispersion

© 2024 chempedia.info