Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dioxide ternary system

Carbon dioxide supply, for the molten carbonate fuel cell, 72 220 Carbon dioxide ternary systems, phase behavior of, 24 4—5 Carbon diselenide, 22 75t Carbon disulfide, 4 822-842 23 567, 568, 621. See also CS2 in cellulose xanthation, 77 254 chemical reactions, 4 824—828 diffusion coefficient in air at 0° C, 7 70t economic aspects, 4 834-835 electrostatic properties of, 7 621t handling, shipment, and storage, 4 833-834... [Pg.141]

Figure 3. Liquid composition at the solid-liquid-vapor condition in the methane-ethane-carbon dioxide ternary system ( ), —84.9°F (A), -90°F (M), —100°F ( ), -I29.9°F ( ), -I<50°F. Figure 3. Liquid composition at the solid-liquid-vapor condition in the methane-ethane-carbon dioxide ternary system ( ), —84.9°F (A), -90°F (M), —100°F ( ), -I29.9°F ( ), -I<50°F.
X11 Xiong, Y. and Kiran, E., Prediction of Mgh-pressnre phase behavionr in polyethylene/n-pentane/carbon dioxide ternary system with the Sanchez-Lacombe models Polymer, 35, 4408, 1994. [Pg.548]

Goemert M, Sadowski G (2008) Phase-equilibrium measurement and modeling of the PMMA/MMA/carbon dioxide ternary system. J Supercrit Fluids 46 218-225... [Pg.358]

GOE Goemert, M. and Sadowski, G., Phase-equilibrium measurements of the polystyrene/styrene/carbon dioxide ternary system at elevated pressures using ATR-FTIR spectroscopy, Mocro/wo/. Symp., 259, 236, 2007. [Pg.462]

Phase Behavior. One of the pioneering works detailing the phase behavior of ternary systems of carbon dioxide was presented ia the early 1950s (12) and consists of a compendium of the solubiHties of over 260 compounds ia Hquid (21—26°C) carbon dioxide. This work contains 268 phase diagrams for ternary systems. Although the data reported are for Hquid CO2 at its vapor pressure, they yield a first approximation to solubiHties that may be encountered ia the supercritical region. Various additional sources of data are also available (1,4,7,13). [Pg.221]

Schwartzentruber J., F. Galivel-Solastiuk and H. Renon, "Representation of the Vapor-Liquid Equilibrium of the Ternary System Carbon Dioxide-Propane-Methanol and its Binaries with a Cubic Equation of State. A new Mixing Rule", Fluid Phase Equilibria, 38,217-226 (1987). [Pg.400]

During the 1940s, a large amount of solubility data was obtained by Francis (6, 7), who carried out measurements on hundreds of binary and ternary systems with liquid carbon dioxide just below its critical point. Francis (6, 7) found that liquid carbon dioxide is also an excellent solvent for organic materials and that many of the compounds studied were completely miscible. In 1955, Todd and Elgin (8) reported on phase equilibrium studies with supercritical ethylene and a number of... [Pg.471]

Experimental results are presented for high pressure phase equilibria in the binary systems carbon dioxide - acetone and carbon dioxide - ethanol and the ternary system carbon dioxide - acetone - water at 313 and 333 K and pressures between 20 and 150 bar. A high pressure optical cell with external recirculation and sampling of all phases was used for the experimental measurements. The ternary system exhibits an extensive three-phase equilibrium region with an upper and lower critical solution pressure at both temperatures. A modified cubic equation of a state with a non-quadratic mixing rule was successfully used to model the experimental data. The phase equilibrium behavior of the system is favorable for extraction of acetone from dilute aqueous solutions using supercritical carbon dioxide. [Pg.115]

Ternary Systems. As one of a series of model systems, we studied the carbon dioxide - acetone - water ternary system at 313 and 333 K. The most interesting feature of the system behavior is an extensive three-phase region at both temperatures. The three-phase region is first observed at a pressure of less than 30 bar at 313 K and approximately 35 bar at 333 K, extending up to approximately the critical pressure of the binary carbon dioxide - acetone system. Table I summarizes our experimental results for the composition of the three phases at equilibrium as a function of pressure and temperature. [Pg.118]

A recirculation apparatus for the determination of high pressure phase equilibrium data for mixtures of water, polar organic liquids and supercritical fluids was constructed and operated for binary and ternary systems with supercritical carbon dioxide. [Pg.129]

We have applied some of these principles to the extraction of 1-butene from a binary mixture of 1,3-butadiene/1-butene. Various mixtures of sc solvents (e.g., ethane, carbon dioxide, ethylene) are used in combination with a strongly polar solvent gas like ammonia. The physical properties of these components are shown in Table I. The experimental results were then compared with VLE predictions using a newly developed equation of state (18). The key feature of this equation is a new set of mixing rules based on statistical mechanical arguments. We have been able to demonstrate its agreement with a number of binary and ternary systems described in the literature, containing various hydrocarbon compounds, a number of selected polar compounds and a supercritical component. [Pg.215]

In addition to the polymerization of dienes the versatility of NdP-based catalysts is exceptional regarding the number of different non-diene monomers which can be polymerized with these catalysts. Acetylene is polymerized by the binary catalyst system NdP/AlEt3 [253,254]. Lactides are polymerized by the ternary system NdP/AlEt3/H20 [255,256]. NdP/TIBA systems are applied in the copolymerization of carbon dioxide and epichlorhy-drine [257] as well as for the block copolymerization of IP and epichloro-hydrin [258]. The ternary catalyst system NdP/MgBu2/TMEDA allows for the homopolymerization of polar monomers such as acrylonitrile [259] and methylmethacrylate [260]. The quaternary system NdP/MgBu2/AlEt3/HMPTA is used for the polymerization of styrene [261]. [Pg.23]

High Pressure Multiphase Equilibria in the Ternary System Carbon Dioxide-Water-1-Propanol... [Pg.241]

The present paper gives an overview of results on high-pressure phase equilibria in the ternary system carbon dioxide-water-1-propanol, which has been investigated at temperatures between 288 and 333 K and pressures up to 16 MPa. Furthermore, pressure-temperature data on critical lines, which bound the region where multiphase equilibria are oberserved were taken. This study continues the series of previous investigations on ternary systems with the polar solvents acetone [2], isopropanol [3] and propionic add [4], A classification of the different types of phase behaviour and thermodynamic methods to model the complex phase behaviour with cubic equations of state are discussed. [Pg.241]

A high-pressure circulation-type apparatus was designed and constructed to investigate the vapor-liquid equilibria (VLE) of systems containing limonene, linalool and supercritical carbon dioxide. VLE data of binary and ternary systems of these compounds can be determined in the ranges of pressure and temperature of interest for the deterpenation of cold-pressed orange oil. The preliminary results obtained for the binaries CC -linalool and C02-limonene were compared to data already published with acceptable accuracy and well correlated by a modified Soave-Redlich-Kwong (SRK) equation of state. [Pg.411]

Supercritical fluids such as carbon dioxide can be used as solvents to extract organic compounds from aqueous solutions. In order to achieve recoveries of these products often in low concentration, cosolvents as methanol or other alcohols have been added to improve the solubility and the selectivity of the primary fluid. To optimize the extract recovery, the knowledge of phase equilibria of the ternary system carbon dioxide-methanol-water is required at different temperatures and pressures. [Pg.445]

The aim of the study is to represent the phase equilibria of three binary systems, carbon dioxide-methanol, carbon dioxide-water and water-methanol and to predict from binary interaction parameters these of ternary system. [Pg.445]

The experimental and predicted results for the ternary system carbon dioxide-methanol-water are listed in Table 7. Chang and Rousseau [47] have measured the solubilities of carbon dioxide in methanol-water mixtures at differents pressures and at temperatures below the critical temperature of carbon dioxide while Yoon [51] have measured the liquid and vapor phase equilibrium composition but overestimates shightly these of carbon dioxide in the liquid phase. [Pg.448]

The proposed method allows us to obtain a good agreement with experiment for three binary systems but also to predict the two-phase equilibria of the ternary system. However it seems that the equations of state used for methanol and water are not enough accurate and that the knowlegde of vapor-liquid equilibria of binaries including carbon dioxide should be improved. [Pg.448]

Francis, A. W., Ternary Systems of Liquid Carbon Dioxide, J. Phys. Chem., 58 1099 (1954)... [Pg.21]


See other pages where Dioxide ternary system is mentioned: [Pg.198]    [Pg.198]    [Pg.349]    [Pg.363]    [Pg.347]    [Pg.250]    [Pg.2]    [Pg.213]    [Pg.691]    [Pg.339]    [Pg.116]    [Pg.18]    [Pg.194]    [Pg.241]    [Pg.243]    [Pg.440]    [Pg.95]    [Pg.13]    [Pg.1004]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Dioxide Systems

Ternary systems

© 2024 chempedia.info