Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Differential equations molecular

The classical microscopic description of molecular processes leads to a mathematical model in terms of Hamiltonian differential equations. In principle, the discretization of such systems permits a simulation of the dynamics. However, as will be worked out below in Section 2, both forward and backward numerical analysis restrict such simulations to only short time spans and to comparatively small discretization steps. Fortunately, most questions of chemical relevance just require the computation of averages of physical observables, of stable conformations or of conformational changes. The computation of averages is usually performed on a statistical physics basis. In the subsequent Section 3 we advocate a new computational approach on the basis of the mathematical theory of dynamical systems we directly solve a... [Pg.98]

Extending time scales of Molecular Dynamics simulations is therefore one of the prime challenges of computational biophysics and attracted considerable attention [2-5]. Most efforts focus on improving algorithms for solving the initial value differential equations, which are in many cases, the Newton s equations of motion. [Pg.263]

In this paper, we discuss semi-implicit/implicit integration methods for highly oscillatory Hamiltonian systems. Such systems arise, for example, in molecular dynamics [1] and in the finite dimensional truncation of Hamiltonian partial differential equations. Classical discretization methods, such as the Verlet method [19], require step-sizes k smaller than the period e of the fast oscillations. Then these methods find pointwise accurate approximate solutions. But the time-step restriction implies an enormous computational burden. Furthermore, in many cases the high-frequency responses are of little or no interest. Consequently, various researchers have considered the use of scini-implicit/implicit methods, e.g. [6, 11, 9, 16, 18, 12, 13, 8, 17, 3]. [Pg.281]

Verlet, L. Computer Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review 159 (1967) 98-103 Janezic, D., Merzel, F. Split Integration Symplectic Method for Molecular Dynamics Integration. J. Chem. Inf. Comput. Sci. 37 (1997) 1048-1054 McLachlan, R. I. On the Numerical Integration of Ordinary Differential Equations by Symplectic Composition Methods. SIAM J. Sci. Comput. 16 (1995) 151-168... [Pg.347]

It is a property of linear, homogeneous differential equations, of which the Schroedinger equation is one. that a solution multiplied by a constant is a solution and a solution added to or subtracted from a solution is also a solution. If the solutions Pi and p2 in Eq. set (6-13) were exact molecular orbitals, id v would also be exact. Orbitals p[ and p2 are not exact molecular orbitals they are exact atomic orbitals therefore. j is not exact for the ethylene molecule. [Pg.177]

The Poisson equation has been used for both molecular mechanics and quantum mechanical descriptions of solvation. It can be solved directly using numerical differential equation methods, such as the finite element or finite difference methods, but these calculations can be CPU-intensive. A more efficient quantum mechanical formulation is referred to as a self-consistent reaction field calculation (SCRF) as described below. [Pg.209]

With the introduction of Gear s algorithm (25) for integration of stiff differential equations, the complete set of continuity equations describing the evolution of radical and molecular species can be solved even with a personal computer. Many models incorporating radical reactions have been pubHshed. [Pg.437]

Solving Newton s equation of motion requires a numerical procedure for integrating the differential equation. A standard method for solving ordinary differential equations, such as Newton s equation of motion, is the finite-difference approach. In this approach, the molecular coordinates and velocities at a time it + Ait are obtained (to a sufficient degree of accuracy) from the molecular coordinates and velocities at an earlier time t. The equations are solved on a step-by-step basis. The choice of time interval Ait depends on the properties of the molecular system simulated, and Ait must be significantly smaller than the characteristic time of the motion studied (Section V.B). [Pg.44]

In his early survey of computer experiments in materials science , Beeler (1970), in the book chapter already cited, divides such experiments into four categories. One is the Monte Carlo approach. The second is the dynamic approach (today usually named molecular dynamics), in which a finite system of N particles (usually atoms) is treated by setting up 3A equations of motion which are coupled through an assumed two-body potential, and the set of 3A differential equations is then solved numerically on a computer to give the space trajectories and velocities of all particles as function of successive time steps. The third is what Beeler called the variational approach, used to establish equilibrium configurations of atoms in (for instance) a crystal dislocation and also to establish what happens to the atoms when the defect moves each atom is moved in turn, one at a time, in a self-consistent iterative process, until the total energy of the system is minimised. The fourth category of computer experiment is what Beeler called a pattern development... [Pg.468]

The value of P2 can be obtained by differentiation with respect to m, since m is the moles of solute per constant number of moles of solvent (n — l/M, where M is the molecular weight of the solvent in kg-mol-1). Differentiating equation (5.28) gives... [Pg.218]

A soluble gas is absorbed into a liquid with which it undergoes a second-order irreversible reaction. The process reaches a steady-state with the surface concentration of reacting material remaining constant at (.2ij and the depth of penetration of the reactant being small compared with the depth of liquid which can be regarded as infinite in extent. Derive the basic differential equation for the process and from this derive an expression for the concentration and mass transfer rate (moles per unit area and unit time) as a function of depth below the surface. Assume that mass transfer is by molecular diffusion. [Pg.857]

To properly describe electronic rearrangement and its dependence on both nuclear positions and velocities, it is necessary to develop a time-dependent theory of the electronic dynamics in molecular systems. A very useful approximation in this regard is the time-dependent Hartree-Fock approximation (34). Its combination with the eikonal treatment has been called the Eik/TDHF approximation, and has been implemented for ion-atom collisions.(21, 35-37) Approximations can be systematically developed from time-dependent variational principles.(38-41) These can be stated for wavefunctions and lead to differential equations for time-dependent parameters present in trial wavefunctions. [Pg.319]

In the past three decades, industrial polymerization research and development aimed at controlling average polymer properties such as molecular weight averages, melt flow index and copolymer composition. These properties were modeled using either first principle models or empirical models represented by differential equations or statistical model equations. However, recent advances in polymerization chemistry, polymerization catalysis, polymer characterization techniques, and computational tools are making the molecular level design and control of polymer microstructure a reality. [Pg.109]

The basic principles are described in many textbooks [24, 26]. They are thus only sketchily presented here. In a conventional classical molecular dynamics calculation, a system of particles is placed within a cell of fixed volume, most frequently cubic in size. A set of velocities is also assigned, usually drawn from a Maxwell-Boltzmann distribution appropriate to the temperature of interest and selected in a way so as to make the net linear momentum zero. The subsequent trajectories of the particles are then calculated using the Newton equations of motion. Employing the finite difference method, this set of differential equations is transformed into a set of algebraic equations, which are solved by computer. The particles are assumed to interact through some prescribed force law. The dispersion, dipole-dipole, and polarization forces are typically included whenever possible, they are taken from the literature. [Pg.271]

This closure property is also inherent to a set of differential equations for arbitrary sequences Uk in macromolecules of linear copolymers as well as for analogous fragments in branched polymers. Hence, in principle, the kinetic method enables the determination of statistical characteristics of the chemical structure of noncyclic polymers, provided the Flory principle holds for all the chemical reactions involved in their synthesis. It is essential here that the Flory principle is meant not in its original version but in the extended one [2]. Hence under mathematical modeling the employment of the kinetic models of macro-molecular reactions where the violation of ideality is connected only with the short-range effects will not create new fundamental problems as compared with ideal models. [Pg.173]

The development of the differential equations which describe the evolution of particle size and molecular weight properties during the course of the polymerization is based on the so-called "population balance" approach, a quite general model framework which will be described shortly. Symbols which will be used in the subsections to follow are all defined in the nomenclature. [Pg.222]

In Eq. (2.30), F is the Fock operator and Hcore is the Hamiltonian describing the motion of an electron in the field of the spatially fixed atomic nuclei. The operators and K. are operators that introduce the effects of electrons in the other occupied MOs. Hence, when i = j, J( (= K.) is the potential from the other electron that occupies the same MO, i ff IC is termed the exchange potential and does not have a simple functional form as it describes the effect of wavefunction asymmetry on the correlation of electrons with identical spin. Although simple in form, Eq. (2.29) (which is obtained after relatively complex mathematical analysis) represents a system of differential equations that are impractical to solve for systems of any interest to biochemists. Furthermore, the orbital solutions do not allow a simple association of molecular properties with individual atoms, which is the model most useful to experimental chemists and biochemists. A series of soluble linear equations, however, can be derived by assuming that the MOs can be expressed as a linear combination of atomic orbitals (LCAO)44 ... [Pg.17]


See other pages where Differential equations molecular is mentioned: [Pg.212]    [Pg.212]    [Pg.149]    [Pg.226]    [Pg.98]    [Pg.281]    [Pg.30]    [Pg.87]    [Pg.97]    [Pg.569]    [Pg.853]    [Pg.853]    [Pg.468]    [Pg.486]    [Pg.501]    [Pg.89]    [Pg.200]    [Pg.154]    [Pg.320]    [Pg.327]    [Pg.332]    [Pg.463]    [Pg.97]    [Pg.132]    [Pg.133]    [Pg.266]    [Pg.172]    [Pg.110]    [Pg.5]    [Pg.206]    [Pg.265]    [Pg.15]    [Pg.19]    [Pg.222]   
See also in sourсe #XX -- [ Pg.89 , Pg.125 , Pg.196 ]




SEARCH



Molecular equations

Stochastic differential equation molecular dynamics

© 2024 chempedia.info