Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular system simulations

Solving Newton s equation of motion requires a numerical procedure for integrating the differential equation. A standard method for solving ordinary differential equations, such as Newton s equation of motion, is the finite-difference approach. In this approach, the molecular coordinates and velocities at a time it + Ait are obtained (to a sufficient degree of accuracy) from the molecular coordinates and velocities at an earlier time t. The equations are solved on a step-by-step basis. The choice of time interval Ait depends on the properties of the molecular system simulated, and Ait must be significantly smaller than the characteristic time of the motion studied (Section V.B). [Pg.44]

The establishment of chemical potential equilibrium (with respect to either a setpoint or phase coexistence) is the central component of most Monte Carlo schemes for simulation of the phase behavior and stability of molecular systems. Simulation of the chemical potential (or chemical potential equilibration) in a polymeric system requires more effort than the corresponding calculation for a simple fluid. The reason is that efficient conformational sampling of the polymer is implicitly required for a free-energy calculation and, in fact, the ergodicity problems described in earlier sections are often exacerbated. [Pg.352]

Procacci P, Darden T A, Paci E and Marchi M 1997 ORAC a molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions J. Comput. Chem. 18 1848-62... [Pg.2281]

Procacci P, March M and Martyna G J 1998 Electrostatic calculations and multiple time scales in molecular dynamics simulation of flexible molecular systems J. Chem. Phys. 108 8799-803... [Pg.2282]

Prenkel, D. Pree energy computation and first order phase transitions. In Molecular Dynamic Simulation of Statistical Mechanical Systems, Enrico Fermi Summer School, Varenna 1985, G. Ciccotti and W. Hoover, eds. North Holland, Amsterdam (1986) 43-65. [Pg.28]

Singh, U.C., Kollman, P.A. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems Applications to the CH3CI 4- Cl exchange reaction and gas phase protonation of polyethers. J. Comput. Chem. 7 (1986) 718-730. [Pg.29]

Berendsen. H.J.C., Van Gunsteren, W.F. Practical algorithms for dynamic simulations, in Molecular Dynamics Simulations of Statistical Mechanical Systems, G. Ciccotti, ed., Soc. Italiana di Fisica, Bologna (1987) 43-65. [Pg.30]

Luty, B.A., Davis, M.E., Tironi, I.G., Van Gunsteren, W.F. A comparison of particle-particle particle-mesh and Ewald methods for calculating interactions in periodic molecular systems. Mol. Simul. 14 (1994) 11-20. [Pg.32]

Molecular dynamics simulations ([McCammon and Harvey 1987]) propagate an atomistic system by iteratively solving Newton s equation of motion for each atomic particle. Due to computational constraints, simulations can only be extended to a typical time scale of 1 ns currently, and conformational transitions such as protein domains movements are unlikely to be observed. [Pg.73]

Conformational free energy simulations are being widely used in modeling of complex molecular systems [1]. Recent examples of applications include study of torsions in n-butane [2] and peptide sidechains [3, 4], as well as aggregation of methane [5] and a helix bundle protein in water [6]. Calculating free energy differences between molecular states is valuable because they are observable thermodynamic quantities, related to equilibrium constants and... [Pg.163]

J. D. Turner, P. K. Weiner, H. M. Chun, V. Lupi, S. Gallion, and U. C. Singh. Variable reduction techniques applied to molecular dynamics simulations. In W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, editors. Computer Simulation of Biomolecular Systems Theoretical and Experimental Applications, volume 2, chapter 24. ESCOM, Leiden, The Netherlands, 1993. [Pg.262]

Janezic, D., Merzel, F. An Efficient Split Integration Symplectic Method for Molecular Dynamics Simulations of Complex Systems. In Proceedings of the... [Pg.347]

The principal idea behind the CSP approach is to use input from Classical Molecular Dynamics simulations, carried out for the process of interest as a first preliminary step, in order to simplify a quantum mechanical calculation, implemented in a subsequent, second step. This takes advantage of the fact that classical dynamics offers a reasonable description of many properties of molecular systems, in particular of average quantities. More specifically, the method uses classical MD simulations in order to determine effective... [Pg.367]

Parallel molecular dynamics codes are distinguished by their methods of dividing the force evaluation workload among the processors (or nodes). The force evaluation is naturally divided into bonded terms, approximating the effects of covalent bonds and involving up to four nearby atoms, and pairwise nonbonded terms, which account for the electrostatic, dispersive, and electronic repulsion interactions between atoms that are not covalently bonded. The nonbonded forces involve interactions between all pairs of particles in the system and hence require time proportional to the square of the number of atoms. Even when neglected outside of a cutoff, nonbonded force evaluations represent the vast majority of work involved in a molecular dynamics simulation. [Pg.474]

Plimpton, S., Hendrickson, B. A New Parallel Method for Molecular Dynamics Simulation of Macromolecular Systems. 1994. Technical Report SAND94-1862. Sandia National Laboratories. [Pg.481]

Although, the notion of molecular dynamics was known in the early turn of the century, the first conscious effort in the use of computer for molecular dynamics simulation was made by Alder and Wainright, who in their paper [1] reported the application of molecular dynamics to realistic particle systems. Using hard spheres potential and fastest computers at the time, they were able to simulate systems of 32 to 108 atoms in 10 to 30 hours. Since the work of Alder and Wainright, interests in MD have increased tremendously, see... [Pg.483]


See other pages where Molecular system simulations is mentioned: [Pg.482]    [Pg.890]    [Pg.1744]    [Pg.2538]    [Pg.2645]    [Pg.39]    [Pg.98]    [Pg.297]    [Pg.330]    [Pg.358]    [Pg.367]    [Pg.485]    [Pg.493]    [Pg.499]    [Pg.338]    [Pg.353]    [Pg.362]   


SEARCH



Ammonia molecular system simulation

Basis sets molecular system simulations

Binding energy molecular system simulations

Chemical bonds molecular system simulations

Conductance/conduction molecular system simulations

Correlation molecular system simulations

Density functional theory molecular system simulations

Dipoles molecular system simulations

Fluorine molecular system simulations

Hartree Fock molecular system simulations

Liquid phase molecular systems Monte Carlo simulation

Molecular Dynamics Simulations of Amorphous Systems

Molecular dynamics simulation nucleic acid systems

Molecular simulations

Monte Carlo simulations molecular systems

Non-equilibrium Molecular Dynamics Simulations of Coarse-Grained Polymer Systems

Polymer systems comparisons with molecular simulation

Self-consistent fields molecular system simulations

Simulation large molecular systems

Simulations complex molecular systems

Systems simulation

Valence bonds molecular system simulations

© 2024 chempedia.info