Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels- Alder reaction endo-selective

These two aspects of the Dids-Alder are both iteroospecific (Chapter 12) in that the stereochemistry of the product is determined simply by the stereochemistry of the starting materials and not at all by how favourable one reaction pathway may be. There is one more stereochemical aspect of the Diels-Alder reaction—endo selectivity—and that is a stereose/ectiveaspect. [Pg.141]

Allenic esters also react with cyclopentadiene in a Diels-Alder reaction endo-selectivity up to 86% was observed in most cases. The unsaturated esters (73) and (74) have been prepared, and their reactions with acyclic dienes studied. The ester (73) undergoes concomitant eliminations of benzenesulphinic acid to give a cyclohexadiene in modest yield, whereas (74) requires a separate treatment with base to bring about its conversion into an aromatic compound. ... [Pg.122]

A Diels-Alderase enzyme that catalyzes the Diels-Alder reaction in biosynthetic processes was isolated in 1995 from cell-free extracts of the fungus Altemaria solani The fungus produces toxins known as solanapyrones that are biosynthesized via Diels-Alder reaction exo selectively. In buffered aqueous medium at pH 7.0 the Diels-Alderase catalyzed the cycloaddition of prosolanapyrone (35) to (-)-solanapyrone A (36) with high exo diastereoselectivity (exo/endo 86 14) and excellent enantioselectivity (ee 99% Scheme 5.9). In sole water the reaction occurred at 30°C and after 3 h a reversed diastereoselectivity (exo/endo 4 96) was observed. [Pg.154]

Another form of selectivity can arise when substitirted dienes and dienophiles are employed in the Diels-Alder reaction. Two different cycloadducts denoted as endo and exo can then be formed (Figure 1.2). [Pg.6]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

In summary, it seems that for most Diels-Alder reactions secondary orbital interactions afford a satisfactory rationalisation of the endo-exo selectivity. However, since the endo-exo ratio is determined by small differences in transition state energies, the influence of other interactions, most often steric in origin and different for each particular reaction, is likely to be felt. The compact character of the Diels-Alder activated complex (the activation volume of the retro Diels-Alder reaction is negative) will attenuate these eflfects. The ideas of Sustmann" and Mattay ° provide an attractive alternative explanation, but, at the moment, lack the proper experimental foundation. [Pg.7]

In 1961 Berson et al. were the first to study systematically the effect of the solvent on the endo-exo selectivity of the Diels-Alder reaction . They interpreted the solvent dependence of the endo-exo ratio by consideririg the different polarities of the individual activated complexes involved. The endo activated complex is of higher polarity than the exo activated complex, because in the former the dipole moments of diene and dienophile are aligned, whereas in the latter they are pointing in... [Pg.10]

The regioselectivity benefits from the increased polarisation of the alkene moiety, reflected in the increased difference in the orbital coefficients on carbon 1 and 2. The increase in endo-exo selectivity is a result of an increased secondary orbital interaction that can be attributed to the increased orbital coefficient on the carbonyl carbon ". Also increased dipolar interactions, as a result of an increased polarisation, will contribute. Interestingly, Yamamoto has demonstrated that by usirg a very bulky catalyst the endo-pathway can be blocked and an excess of exo product can be obtained The increased di as tereo facial selectivity has been attributed to a more compact transition state for the catalysed reaction as a result of more efficient primary and secondary orbital interactions as well as conformational changes in the complexed dienophile" . Calculations show that, with the polarisation of the dienophile, the extent of asynchronicity in the activated complex increases . Some authors even report a zwitteriorric character of the activated complex of the Lewis-acid catalysed reaction " . Currently, Lewis-acid catalysis of Diels-Alder reactions is everyday practice in synthetic organic chemistry. [Pg.12]

Three years after the Breslow report on the large effects of water on the rate of the Diels-Alder reaction, he also demonstrated tliat the endo-exo selectivity of this reaction benefits markedly from employing aqueous media . Based on the influence of salting-in and saltirg-out agents, Breslow pinpoints hydrophobic effects as the most important contributor to the enhanced endo-exo... [Pg.24]

Studies on solvent effects on the endo-exo selectivity of Diels-Alder reactions have revealed the importance of hydrogen bonding interactions besides the already mentioned solvophobic interactions and polarity effects. Further evidence of the significance of the former interactions comes from computer simulations" and the analogy with Lewis-acid catalysis which is known to enhance dramatically the endo-exo selectivity (Section 1.2.4). [Pg.25]

Table 2,8, Solvent effect on the endo-exo selectivity (% endo -% exo) of the nncatalysed and Cu" -ion catalysed Diels-Alder reaction between 2,4c and 2,5 at 25°C. Table 2,8, Solvent effect on the endo-exo selectivity (% endo -% exo) of the nncatalysed and Cu" -ion catalysed Diels-Alder reaction between 2,4c and 2,5 at 25°C.
In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

The effect of ligands on the endo-exo selectivity of Lewis-acid catalysed Diels-Alder reactions has received little attention. Interestingly, Yamamoto et al." reported an aluminium catalyst that produces mainly exo Diels-Alder adduct. The endo-approach of the diene, which is normally preferred, is blocked by a bulky group in the ligand. [Pg.91]

In contrast, investigation of the effect of ligands on the endo-exo selectivity of the Diels-Alder reaction of 3.8c with 3.9 demonstrated that this selectivity is not significantly influenced by the presence of ligands. The effects of ethylenediamine, 2,2 -bipyridine, 1,10-phenanthroline, glycine, L-tryptophan and L-abrine have been studied. The endo-exo ratio observed for the copper(II)-catalysed reaction in the presence of these ligands never deviated more than 2% from the endo-exo ratio of 93-7 obtained for catalysis by copper aquo ion. [Pg.91]

Analogously, the effect of micelles on the rate of the unimolecular retro Diels-Alder reaction has been studied. Also here only a modest retardation" or acceleration" is observed. Likewise, the presence of micelles has been reported to have a modest influence on an intramolecular Diels-Alder reaction . Studies on the endo-exo selectivity of a number of different Diels-Alder reactions in micellar media lead to comparable conclusions. Endo-exo selectivities tend to be somewhat smaller in micellar solutions than in pure water, but still are appreciably larger than those in organic media In contrast, in microemulsions the endo-exo selectivity is reduced significantly" ... [Pg.132]

First of all, given the well recognised promoting effects of Lewis-acids and of aqueous solvents on Diels-Alder reactions, we wanted to know if these two effects could be combined. If this would be possible, dramatic improvements of rate and endo-exo selectivity were envisaged Studies on the Diels-Alder reaction of a dienophile, specifically designed for this purpose are described in Chapter 2. It is demonstrated that Lewis-acid catalysis in an aqueous medium is indeed feasible and, as anticipated, can result in impressive enhancements of both rate and endo-exo selectivity. However, the influences of the Lewis-acid catalyst and the aqueous medium are not fully additive. It seems as if water diminishes the catalytic potential of Lewis acids just as coordination of a Lewis acid diminishes the beneficial effects of water. Still, overall, the rate of the catalysed reaction... [Pg.161]

This thesis describes a study of catalysis of Diels-Alder reactions in water. No studies in this field had been reported at the start of the research, despite the well known beneficial effects of acpieous solvents as well as of Lewis-add catalysts on rate and endo-exo selectivity of Diels-Alder reactions in organic solvents. We envisaged that a combination of these two effects might well result in extremely large rate enhancements and improvements of the endo-exo selectivity. [Pg.173]

As expected, the solvent has a significant effect on the endo-exo selectivity of the uncatalysed Diels-Alder reaction between 1 and 2. In contrast, the corresponding effect on the Lewis-acid catalysed reaction is small. There is no beneficial effect of water on the endo-exo selectivity of the catalysed Diels-Alder reaction. The endo-exo selectivity in water is somewhat diminished relative to that in ethanol and acetonitrile. [Pg.174]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

The complexation procedure included addition of an equimolar amount of R,R-DBFOX/Ph to a suspension of a metal salt in dichloromethane. A clear solution resulted after stirring for a few hours at room temperature, indicating that formation of the complex was complete. The resulting solution containing the catalyst complex was used to promote asymmetric Diels-Alder reactions between cyclopen-tadiene and 3-acryloyl-2-oxazolidinone. Both the catalytic activity of the catalysts and levels of chirality induction were evaluated on the basis of the enantio-selectivities observed for the endo cycloadduct. [Pg.251]

The carbo-Diels-Alder reaction of acrolein with butadiene (Scheme 8.1) has been the standard reaction studied by theoretical calculations in order to investigate the influence of Lewis acids on the reaction course and several papers deal with this reaction. As an extension of an ab-initio study of the carbo-Diels-Alder reaction of butadiene with acrolein [5], Houk et al. investigated the transition-state structures and the origins of selectivity of Lewis acid-catalyzed carbo-Diels-Alder reactions [6]. Four different transition-state structures were considered (Fig. 8.4). Acrolein can add either endo (N) or exo (X), in either s-cis (C) or s-trans (T), and the Lewis acid coordinates to the carbonyl in the molecular plane, either syn or anti to the alkene. [Pg.305]

An important contribution for the endo selectivity in the carho-Diels-Alder reaction is the second-order orbital interaction [1], However, no bonds are formed in the product for this interaction. For the BF3-catalyzed reaction of acrolein with butadiene the overlap population between Cl and C6 is only 0.018 in the NC-transi-tion state [6], which is substantially smaller than the interaction between C3 and O (0.031). It is also notable that the C3-0 bond distance, 2.588 A, is significant shorter than the C1-C6 bond length (2.96 A), of which the latter is the one formed experimentally. The NC-transition-state structure can also lead to formation of vinyldihydropyran, i.e. a hetero-Diels-Alder reaction has proceeded. The potential energy surface at the NC-transition-state structure is extremely flat and structure NCA (Fig. 8.6) lies on the surface-separating reactants from product [6]. [Pg.307]

The endo exo selectivity for the Lewis acid-catalyzed carbo-Diels-Alder reaction of butadiene and acrolein deserves a special attention. The relative stability of endo over exo in the transition state accounts for the selectivity in the Diels-Alder cycloadduct. The Lewis acid induces a strong polarization of the dienophile FMOs and change their energies (see Fig. 8.2) giving rise to better interactions with the diene, and for this reason, the role of the possible secondary-orbital interaction must be considered. Another possibility is the [4 + 3] interaction suggested by Singleton... [Pg.308]

Recently, enhanced endo selectivity has been reported in the Diels-Alder reaction of fE -l-acetoxybuta-l,3-dienes with methyl fi-nitroacrylate The selectivity is compared with that of the reaction using l-methoxybuta-l,3-dienes and 1-trimethylsilyloxybuta-1,3-di-enes The degree of electron richness of a diene is an important consideration in endo eKO selectivity issues In particular, electron-rich dienes favor the formation of fixc-nitrocycload-ducts fEq 8 9 ... [Pg.235]

A study of the Diels-Alder reaction was carried out by Earle et al. [42]. The rates and selectivities of reactions between ethyl acrylate (EA) and cyclopentadiene (CP) in water, 5 m lithium perchlorate in diethyl ether (5 m EPDE), and [BMIM][PE(3] were compared. The reactions in the ionic liquid [BMIM][PE(3] were marginally faster than in water, but both were slower than in 5 m EPDE [42, 43] (see Table 5.1-1 and Scheme 5.1-18). It should be noted that these three reactions give up to 98 % yields if left for 24 hours. The endo. exo selectivity in [BMIM][PE(3] was similar to that in 5 M EPDE, and considerably greater than that in water (Table 5.1-1). [Pg.182]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

Carbene complexes which have an all-carbon tether between the diene and the dienophile react via intramolecular Diels-Alder reaction to give the corresponding bicyclic compound. The stereoselectivities of these reactions are comparable to those observed for the Lewis acid-catalysed reactions of the corresponding methyl esters and much higher than those of the thermal reactions of the methyl esters which are completely unselective. Moreover, the ris-sub-stituted complexes undergo endo-selective reactions where the corresponding reaction of the ester fails [109] (Scheme 61). [Pg.100]

Exclusively endo-selectivity Lewis-acid catalyzed /jetero-Diels-Alder reactions of (E)-1-phenylsulfonyl-3-alken-2-ones with vinylethers [102]... [Pg.133]

The photo-induced exo selectivity was observed in other classic Diels-Alder reactions. Data relating to some exo adducts obtained by reacting cyclopentadiene or cyclohexadiene with 2-methyl-1,4-benzoquinone, 5-hydroxynaphtho-quinone, 4-cyclopentene-l,3-dione and maleic anhydride are given in Scheme 4.13. The presence and amount of EtsN plays a decisive role in reversing the endo selectivity. The possibility that the prevalence of exo adduct is due to isomerization of endo adduct under photolytic conditions was rejected by control experiments, at least for less reactive dienophiles. [Pg.164]

The intramolecular /zetero-Diels-Alder reactions of 4-O-protected acyl-nitroso compounds 81, generated in situ from hydroxamic acids 80 by periodate oxidation, were investigated under various conditions in order to obtain the best endo/exo ratio of adducts 82 and 83 [65h] (Table 4.15). The endo adducts are key intermediates for the synthesis of optically active swainsonine [66a] and pumiliotoxin [66b]. The use of CDs in aqueous medium improves the reaction yield and selectivity with respect to organic solvents. [Pg.171]

There are few examples of the influence of micelles on reactivity and selectivity of Diels-Alder reactions, and the observed effects are sometimes capricious. Compared to the reaction in pure water, modest [71] and exceptional [72] accelerations and even retardations [65e, g, 73] have been observed, and little [73b, 74] and high [75] endo/exo diastereoselectivities were found. [Pg.176]


See other pages where Diels- Alder reaction endo-selective is mentioned: [Pg.368]    [Pg.368]    [Pg.101]    [Pg.225]    [Pg.31]    [Pg.6]    [Pg.11]    [Pg.12]    [Pg.27]    [Pg.43]    [Pg.62]    [Pg.63]    [Pg.75]    [Pg.174]    [Pg.92]    [Pg.311]    [Pg.183]    [Pg.76]    [Pg.352]   


SEARCH



Diels endo-selectivity

Diels-Alder reactions endo selectivity

Diels-Alder reactions selection

Diels-Alder reactions selectivity

Endo-selective reaction

Reaction selective

Reactions selection

Selected reactions

Selectivity reactions

© 2024 chempedia.info