Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels endo-selectivity

An important contribution for the endo selectivity in the carho-Diels-Alder reaction is the second-order orbital interaction [1], However, no bonds are formed in the product for this interaction. For the BF3-catalyzed reaction of acrolein with butadiene the overlap population between Cl and C6 is only 0.018 in the NC-transi-tion state [6], which is substantially smaller than the interaction between C3 and O (0.031). It is also notable that the C3-0 bond distance, 2.588 A, is significant shorter than the C1-C6 bond length (2.96 A), of which the latter is the one formed experimentally. The NC-transition-state structure can also lead to formation of vinyldihydropyran, i.e. a hetero-Diels-Alder reaction has proceeded. The potential energy surface at the NC-transition-state structure is extremely flat and structure NCA (Fig. 8.6) lies on the surface-separating reactants from product [6]. [Pg.307]

Recently, enhanced endo selectivity has been reported in the Diels-Alder reaction of fE -l-acetoxybuta-l,3-dienes with methyl fi-nitroacrylate The selectivity is compared with that of the reaction using l-methoxybuta-l,3-dienes and 1-trimethylsilyloxybuta-1,3-di-enes The degree of electron richness of a diene is an important consideration in endo eKO selectivity issues In particular, electron-rich dienes favor the formation of fixc-nitrocycload-ducts fEq 8 9 ... [Pg.235]

Carbene complexes which have an all-carbon tether between the diene and the dienophile react via intramolecular Diels-Alder reaction to give the corresponding bicyclic compound. The stereoselectivities of these reactions are comparable to those observed for the Lewis acid-catalysed reactions of the corresponding methyl esters and much higher than those of the thermal reactions of the methyl esters which are completely unselective. Moreover, the ris-sub-stituted complexes undergo endo-selective reactions where the corresponding reaction of the ester fails [109] (Scheme 61). [Pg.100]

Exclusively endo-selectivity Lewis-acid catalyzed /jetero-Diels-Alder reactions of (E)-1-phenylsulfonyl-3-alken-2-ones with vinylethers [102]... [Pg.133]

The photo-induced exo selectivity was observed in other classic Diels-Alder reactions. Data relating to some exo adducts obtained by reacting cyclopentadiene or cyclohexadiene with 2-methyl-1,4-benzoquinone, 5-hydroxynaphtho-quinone, 4-cyclopentene-l,3-dione and maleic anhydride are given in Scheme 4.13. The presence and amount of EtsN plays a decisive role in reversing the endo selectivity. The possibility that the prevalence of exo adduct is due to isomerization of endo adduct under photolytic conditions was rejected by control experiments, at least for less reactive dienophiles. [Pg.164]

An endo-selective ionic Diels-Alder reaction of a,/f-enone and a,/f-enal acetals catalyzed by electrogenerated acid [99]... [Pg.200]

Lithium trifluoromethanesulfonimide in acetone or diethyl ether as a safe alternative to lithium perchlorate in diethyl ether for effecting Diels-Alder reactions. Unexpected influence of the counterion on exo/endo selectivity [47]... [Pg.296]

Scheme 26 Endo-selectivity of the Diels-Alder reactions and orbital phase environments... Scheme 26 Endo-selectivity of the Diels-Alder reactions and orbital phase environments...
Regioselectivities [7] and endo selectivity [8, 9] increase upon Lewis acid catalysis of Diels-Alder reactions (Scheme 9). Houk and Strozier [10] found that protonation on the carbonyl oxygen of acrolein amplifies the LUMO at the terminal and... [Pg.62]

Both inter- and intra- molecular Diels-Alder reactions of 2-benzopyran-3-ones occur with high endo-selectivity and have been used to synthesise (-)-podophyllotoxin (14) and 4a-substituted cis-BC fused hexahydrophenenthrenes (15), respectively <96JCS(P1)151, 96JCS(P1)705>. [Pg.297]

It should be noted, however, that despite many examples of the acceleration of Diels-Alder reactions by the use of aqueous media, Elguero59 reported that the Diels-Alder reaction between cyclopentadi-ene and methyl (and benzyl) 2-acetamidoacrylates proceeded better in toluene than in water both in yield and in exo/endo selectivity. Additionally, ultrasonic irradiation did not improve the yield. [Pg.386]

The intramolecular Diels-Alder reaction of nitrotrienes proceeds stereoselectively in the presence of LiC104 in diethyl ether to give one stereoisomer from endo selectivity. The nitro group is removed from the adduct with Bu3SnH (Eq. 7.76).96... [Pg.206]

Intramolecular Diels-Alder cyclizations of (E)- -nitro-1,7.9-decatrienes under thermal conditions and Lewis acid conditions lead to the formation of decalin ring systems with excellent endo selectivity (Eq. 8.21). This strategy is used for preparing of the AB ring system of norzoanthamine.33... [Pg.240]

Concerted cycloaddition reactions provide the most powerful way to stereospecific creations of new chiral centers in organic molecules. In a manner similar to the Diels-Alder reaction, a pair of diastereoisomers, the endo and exo isomers, can be formed (Eq. 8.45). The endo selectivity in the Diels-Alder arises from secondary 7I-orbital interactions, but this interaction is small in 1,3-dipolar cycloaddition. If alkenes, or 1,3-dipoles, contain a chiral center(s), the approach toward one of the faces of the alkene or the 1,3-dipole can be discriminated. Such selectivity is defined as diastereomeric excess (de). [Pg.250]

Theoretical calculations have also permitted one to understand the simultaneous increase of reactivity and selectivity in Lewis acid catalyzed Diels-Alder reactions101-130. This has been traditionally interpreted by frontier orbital considerations through the destabilization of the dienophile s LUMO and the increase in the asymmetry of molecular orbital coefficients produced by the catalyst. Birney and Houk101 have correctly reproduced, at the RHF/3-21G level, the lowering of the energy barrier and the increase in the endo selectivity for the reaction between acrolein and butadiene catalyzed by BH3. They have shown that the catalytic effect leads to a more asynchronous mechanism, in which the transition state structure presents a large zwitterionic character. Similar results have been recently obtained, at several ab initio levels, for the reaction between sulfur dioxide and isoprene1. ... [Pg.21]

Bis(oxazoline)-type complexes, which have been found useful for asymmetric aldol reactions, Diels-Alder, and hetero Diels-Alder reactions can also be used for inducing 1,3-dipolar reactions. Chiral nickel complex 180, which can be prepared by reacting equimolar amounts of Ni(C10)4 6H20 and the corresponding (J ,J )-4,6-dibenzofurandiyl-2,2 -bis(4-phenyloxazoline) (DBFOX/Ph) in dichloromethane, can be used for highly endo-selective and enantioselective asymmetric nitrone cycloaddition. The presence of 4 A molecular sieves is essential to attain high selectivities.88 In the absence of molecular sieves, both the diastereoselectivity and enantioselectivity will be lower. Representative results are shown in Scheme 5-55. [Pg.311]

Asymmetric Diels-Alder reactions. Unlike methyl crotonate, which is a weak dienophile, chiral (E)-crotonyl oxazolidinones when activated by a dialkylaluminum chloride (1 equiv.) are highly reactive and diastereoselective dienophiles. For this purpose, the unsaturated imides formed from oxazolidinones (Xp) derived from (S)-phenylalanol show consistently higher diastereoselectivity than those derived from (S)-valinol or (IS, 2R)-norephedrine. The effect of the phenyl group is attributed in part at least to an electronic interaction of the aromatic ring. The reactions of the unsaturated imide 1 shown in equation (I) are typical of reactions of unsaturated N-acyloxazolidinones with cyclic and acyclic dienes. All the Diels-Alder reactions show almost complete endo-selectivity and high diastereoselectivity. Oxazolidinones are useful chiral auxiliaries for intramolecular Diels-Alder... [Pg.244]

Diels-Alder catalysis.1 This radical cation can increase the endo-selectivity of Diels-Alder reactions when the dienophile is a styrene or electron-rich alkene. This endo-selectivity obtains even in intramolecular Diels-Alder reactions. Thus the triene 2, a mixture of (Z)- and (E)-isomers, cyclizes in the presence of 1 to 0° to the hydroindanes 3 and 4 in the ratio 97 3. Similar cyclization of (E)-2 results in 3 and 4 in the ratio 98 2 therefore, the catalyst can effect isomerization of (Z)-2 to (E)-2. Even higher stereoselectivity is observed when the styrene group of 2 is replaced by a vinyl sulfide group (SC6H5 in place of QHtOCT ). [Pg.338]

The endo selectivity in many Diels-Alder reactions has been attributed to attractive secondary orbital interactions. In addition to the primary stabilizing HOMO-LUMO interactions, additional stabilizing interactions between the remaining parts of the diene and the dienophile are possible in the endo transition state (Figure 3). This secondary orbital interaction was originally proposed for substituents having jr orbitals, e.g. CN and CHO, but was later extended to substituents with tt(CH2) type of orbitals, as encountered in cyclopropene57. [Pg.341]

Marchand and coworkers102 reported a difference in site selectivity between the thermodynamically and kinetically controlled Diels-Alder reactions of cyclopentadiene with 2,3-dicyano-p-benzoquinone (126) (equation 37). Under kinetic conditions, the more reactive double bond of 126 reacted with cyclopentadiene affording 127, whereas the less substituted double bond reacted under thermodynamic conditions affording 128. Both reactions proceeded with complete endo selectivity. These findings were in agreement with ab initio HF/3-21G calculations. [Pg.361]

The Lewis acid catalyzed reaction of furan (169) with ketovinylphosphonate 170 produced a mixture of adducts, both of which slowly underwent retro Diels-Alder reactions at room temperature121. When diethylaluminum chloride was used as the catalyst, the endo selectivity (with respect to the keto functionality) was enhanced from 171/172 = 58/42 to 78/22 by raising the reaction temperature from — 25 °C to 0°C (equation 47). This is in agreement with the FMO theory, since initial Lewis acid complexation is with the phosphonate group. [Pg.368]

Sudo and Saigo153 reported the application of ds-2-amino-3,3-dimethyl-l-indanol derived l,3-oxazolidin-2-one 231 as a chiral auxiliary in asymmetric Diels-Alder reactions. The TV-crotonyl and TV-acryloyl derivatives were reacted with cyclopentadiene, 1,3-cyclohexadiene, isoprene and 2,3-dimethyl-l,3-butadiene, using diethylaluminum chloride as the Lewis acid catalyst. The reactions afforded the expected cycloadducts in moderate to high yields (33-97%) with high endo selectivities and high de values (92% to >98%). [Pg.383]

Kunieda and colleagues155 used a similar kind of l,3-oxazolidin-2-one (234) and studied the diethylaluminum chloride and boron trifluoride etherate catalyzed Diels-Alder reactions of its A-acryloyl and A-crotonyl derivatives with cyclopentadiene. The yields were high (80-100%), the reactions being almost completely endo selective. The diastere-omeric excesses obtained ranged from 71% to more than 99%. [Pg.384]

Brimble and coworkers172 reported the asymmetric Diels-Alder reactions between quinones 265 bearing a menthol chiral auxiliary and cyclopentadiene (equation 73). When zinc dichloride or zinc dibromide was employed as the Lewis acid catalyst, the reaction proceeded with complete endo selectivity, but with only moderate diastereofacial selectivity affording 3 1 and 2 1 mixtures of 266 and 267 (dominant diastereomer unknown), respectively. The use of stronger Lewis acids, such as titanium tetrachloride, led to the formation of fragmentation products. Due to the inseparability of the two diastereomeric adducts, it proved impossible to determine which one had been formed in excess. [Pg.391]

Chan and colleagues181 studied the efficiency of tricyclic sultam 285 in asymmetric Diels-Alder reactions which gave adducts like 286 (equation 79). Some of their results have been summarized in Table 14. The endo selectivities were high in all cases, whereas the diastereofacial selectivities depended on the catalyst and the reaction conditions employed. [Pg.395]

Crisp and Gebauer187 studied the endo selective Diels-Alder reactions of chiral dienes 295 with maleic anhydride. They found that the diastereofacial selectivity was dependent... [Pg.397]

Ci.v-1 -(arylsulfonamido)indan-2-ols have been shown to be excellent chiral auxiliaries for asymmetric Diels-Alder reactions191. Some results obtained in the Lewis acid catalyzed Diels-Alder reaction of 1 (p-lohicnc sulfonamido)indan-2-yl acrylate (303) with cyclopentadiene (equation 84) have been depicted in Table 17. The reaction conducted in the absence of a Lewis acid did not afford any facial selectivity and only moderate endo/exo selectivity. However, when a Lewis acid was added, excellent de values and almost complete endo selectivities (cf. 304) were observed, almost independent of the type and amount of Lewis acid added. [Pg.400]

The Diels-Alder reaction of ethyl 2-benzoylacrylate (450) with cyclopentadiene was effectively catalyzed by magnesium(II) complexes of bis(oxazolidine) 448 and oxazolidine 449 (equation 134). When the catalysts were prepared in refluxing acetonitrile, adduct 451 was obtained with virtually complete endo selectivity for the ethoxycarbonyl group and up to 87% ee282. [Pg.434]

FIGURE 2. The Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. The selectivity leading to the endo-product (endo-selectivity of Diels-Alder reactions) is rationalized by secondary orbital interactions in the endo-transition state... [Pg.1041]


See other pages where Diels endo-selectivity is mentioned: [Pg.6]    [Pg.192]    [Pg.36]    [Pg.80]    [Pg.216]    [Pg.264]    [Pg.106]    [Pg.118]    [Pg.158]    [Pg.66]    [Pg.21]    [Pg.402]    [Pg.201]    [Pg.356]    [Pg.359]    [Pg.383]    [Pg.385]    [Pg.428]    [Pg.973]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Diels- Alder reaction endo-selective

Diels-Alder reactions endo selectivity

Endo Selectivities, in Diels-Alder reaction

Endo selectivity, in the Diels-Alder

Endo selectivity, in the Diels-Alder reaction

© 2024 chempedia.info