Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric properties ferroelectric/piezoelectric

In the broad range of ceramic materials that are used for electrical and electronic apphcations, each category of material exhibits unique property characteristics which directiy reflect composition, processing, and microstmcture. Detailed treatment is given primarily to those property characteristics relating to insulation behavior and electrical conduction processes. Further details concerning the more specialized electrical behavior in ceramic materials, eg, polarization, dielectric, ferroelectric, piezoelectric, electrooptic, and magnetic phenomena, are covered in References 1—9. [Pg.349]

Tantalum and niobium are added, in the form of carbides, to cemented carbide compositions used in the production of cutting tools. Pure oxides are widely used in the optical industiy as additives and deposits, and in organic synthesis processes as catalysts and promoters [12, 13]. Binary and more complex oxide compounds based on tantalum and niobium form a huge family of ferroelectric materials that have high Curie temperatures, high dielectric permittivity, and piezoelectric, pyroelectric and non-linear optical properties [14-17]. Compounds of this class are used in the production of energy transformers, quantum electronics, piezoelectrics, acoustics, and so on. Two of... [Pg.1]

Crystals with one of the ten polar point-group symmetries (Ci, C2, Cs, C2V, C4, C4V, C3, C3v, C(, Cgv) are called polar crystals. They display spontaneous polarization and form a family of ferroelectric materials. The main properties of ferroelectric materials include relatively high dielectric permittivity, ferroelectric-paraelectric phase transition that occurs at a certain temperature called the Curie temperature, piezoelectric effect, pyroelectric effect, nonlinear optic property - the ability to multiply frequencies, ferroelectric hysteresis loop, and electrostrictive, electro-optic and other properties [16, 388],... [Pg.217]

Ferroelectric materials are capable of being polarized in the presence of an electric field. They may exhibit considerable anomalies in one or more of their physical properties, including piezoelectric and pyroelectric coefficients, dielectric constant, and optoelectronic constant. In the latter case, the transmission of light through the material is affected by the electric field, which produces changes in refractive index and optical absorption coefficient. Varying the applied field changes the phase modulation. [Pg.398]

The unique dielectric properties and polymorphism of PVDF are the source of its high piezoelectric and pyroelectric activity.75 The relationship between ferroelectric behavior, which includes piezoelectric and pyroelectric phenomena and other electrical properties of the polymorphs of polyvinylidene fluoride, is discussed in Reference 76. [Pg.46]

Of central importance for understanding the fundamental properties of ferroelec-trics is dynamics of the crystal lattice, which is closely related to the phenomenon of ferroelectricity [1]. The soft-mode theory of displacive ferroelectrics [65] has established the relationship between the polar optical vibrational modes and the spontaneous polarization. The lowest-frequency transverse optical phonon, called the soft mode, involves the same atomic displacements as those responsible for the appearance of spontaneous polarization, and the soft mode instability at Curie temperature causes the ferroelectric phase transition. The soft-mode behavior is also related to such properties of ferroelectric materials as high dielectric constant, large piezoelectric coefficients, and dielectric nonlinearity, which are extremely important for technological applications. The Lyddane-Sachs-Teller (LST) relation connects the macroscopic dielectric constants of a material with its microscopic properties - optical phonon frequencies ... [Pg.589]

As a consequence, the joins for (Pbi. (Bajc)Ti03 at low temperature and for Pb(Zri cTy03 at room temperature are interrupted by a morphotropic phase boundary (MPB), which separates tetragonal and rhombohedral phases (Fig. 14). The structural state of the oxides in the vicinity of the MPB is a subject of active inquiry, because many of the physical properties of PBZT ferroelectrics are maximized at the MPB. These include the dielectric constant, the piezoelectric constant, and the electromechanical coupling coefficients (Jaffe 1971, Thomann and Wersing 1982, Heywang and Thomann 1984). For industrial purposes, this behavior is exploited by annealing PBZT ferroelectrics with compositions near the MPB close to the Curie temperature in an... [Pg.151]

Table 27.5 lists applications of some of the most commercially important mixed metal, perovskite-t5q)e oxides, and illustrates that it is the dielectric, ferroelectric, piezoelectric (see Section 13.9) and pyroelectric properties of these materials that are exploited in the electronics industry. [Pg.824]

Exists in five cryst modifications. The tetragonal form (obtained by the wet process) appears to have the most desirable electric properties and is described here d 6.08. mp 1625. Curie point 120". Has ferroelectric and piezoelectric properties. Becomes parmanently polarized when exposed to high voltage direct current, provided the temperature is never allowed to rise above Curie pt. Has high dielectric properties which can be influenced by temp, voltage, and frequency. [Pg.156]

Conduction and dielectric properties are not the only electrical properties that polymers can exhibit. Some polymers, in common with certain other types of materials, can exhibit ferroelectric properties, i.e. they can acquire a permanent electric dipole, or photoconductive properties, i.e. exposure to light can cause them to become conductors. Ferroelectric materials also have piezoelectric properties, i.e. there is an interaction between their states of stress or strain and the electric field across them. All of these properties have potential applications but they are not considered further in this book. [Pg.248]

Ferroelectric composites are alternatives to standard piezoelectric and pyroelectric ceramics such as lead zirconate titanate (PZT) and BaHOs (BT). They combine the strong ferroelectric and dielectric properties of ceramics with the easy processing and good mechanical properties of polymers. Dispersion of micrometer-sized ferroelectric particles in an electrically passive epoxy matrix was first published by Furukawa et al. [1976] and later extended to ferroelectric matrices such as poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-3-fluoroethylene) (PVDF-TrFE) [Hsiang et al., 2001 Hilczer et al., 2002 Gimenes et al., 2004 Lam et al., 2005 Beloti et al., 2006]. However, the necessity of miniaturization of electronic components and... [Pg.538]

There is a structural requirement for ferroelectricity. There are a total of 32 different symmetry point groups, 21 of which do not possess a center of symmetry. Ferro-electrics are part of a small subgroup of noncentrosym-metric crystals. Related properties are piezoelectricity and pyroelectricity. Dielectrics belonging to all but one of the groups of noncentrosymmetric crystals are piezoelectric. Pyroelectric crystals form a further subgroup of 10 types of crystal having especially low symmetry as shown in Table 31.5. [Pg.560]

Among different (like flexoelectric, flexomagnetic etc.) flexoeffects, the influence of flexoelectric effect on the nanosystem properties had been studied in most details. One can conclude that even rather moderate flexoelectric effect significantly renormalizes all the polar, piezoelectric and dielectric properties and the correlation radius in particular. The effect also suppresses the size-induced phase transition from ferroelectric to paraelectric phase and thus stabilizes the ordered phase in ferroic nanoparticles. [Pg.239]

An understanding of hardening-softening properties can be achieved through the analysis of the domain wall contribution to the polarization response of ferroelectrics. It should be noted here that this is not the only contribution to the polarization response rather, the intrinsic polarization response as well as surface, boundary, and interface effects may also contribute significantly to the total polarization of a ferroelectric material, especially in thin films. However, the dominant contribution to the dielectric, elastic, and piezoelectric properties in ferroelectric materials is extrinsic, and typically originates from displacement of the domain walls [59]. [Pg.741]

Yin, J. Jiang, B. Cao, W. Elastic, Piezoelectric, and Dielectric Properties of 0.955Pb(Zni/3 Nl /s)O3-0.045PbTiO3 Single Crystal with Designed Mvltido-mains. IEEE Trans, on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 1 (Jan. 2000), pp. 285-291... [Pg.54]

In the next few paragraphs, we will discuss the processes involved in synthesis ofbarium titanate. This is an extremely important material for electronic industry due to its outstanding ferroelectric, piezoelectric and dielectric properties. Chemistry ofBa and Ti and crystal structure of BaTiOg are relatively simple. Phase transformations of barium titanate have been deeply studied and well documented. Thus, it may be considered as a convenient model oxide material. It is not surprising that a lot of information about application of Pechini method is available for this compound. Here we will attempt to create the complete scenario of barium titanate synthesis by PC method, and then we will expand this knowledge to discuss synthesis of other important multicomponent oxide materials. [Pg.82]

The particular choice of the authors was rather to put emphasis on experimental techniques that are either specifically relevant or powerfiil with respect to ferroelectric polymers and fenoelectrets or represent recent experimental developments and trends. In this sense, room was given to nonlinear dielectric properties that can be probed by nonlinear dielectric spectroscopy and various types of hysteresis experiments. Besides a systematic description of piezoelectric and inverse piezoelectric techniques, we have added dielectric resonance spectroscopy as an all-round approach yielding elastic, piezoelectric, and dielectric properties of polymer electrets in a single dielectric measurement. [Pg.620]

The ferroelectric effect was discovered in 1920 by Valasek, who obtained hysteresis curves for Rochelle salt analogous to the B-H curves of ferromagnetism [5.5], and studied the electric hysteresis and piezoelectric response of the crystal in some detail [5.6]. For about 15 years thereafter, ferroelectricity was considered as a very specific property of Rochelle salt, until Busch and Scherrer discovered ferroelectricity in KH2PO4 and its sister crystals in 1935. During World War II, the anomalous dielectric properties of BaTiOs were discovered in ceramic specimens independently by Wainer and Solomon in the USA in 1942, by Ogawa in Japan in 1944, and by Wul and Goldman in Russia in 1946. Since then, many ferroelectrics have been discovered and research activity has rapidly increased. In recent decades, active studies have been made on ferroelectric liquid crystals and high polymers, after ferroelectricity had been considered as a characteristic property of solids for more than 50 years. [Pg.904]


See other pages where Dielectric properties ferroelectric/piezoelectric is mentioned: [Pg.9]    [Pg.9]    [Pg.283]    [Pg.87]    [Pg.365]    [Pg.11]    [Pg.121]    [Pg.234]    [Pg.301]    [Pg.159]    [Pg.482]    [Pg.64]    [Pg.733]    [Pg.737]    [Pg.121]    [Pg.904]    [Pg.180]    [Pg.182]    [Pg.47]    [Pg.272]    [Pg.149]    [Pg.486]    [Pg.105]    [Pg.65]    [Pg.98]    [Pg.239]    [Pg.657]    [Pg.186]   


SEARCH



Dielectric propertie

Dielectric properties

Dielectric properties, ferroelectric

Ferroelectric properties

Ferroelectric/piezoelectric

Ferroelectric/piezoelectric ferroelectricity

Ferroelectric/piezoelectric piezoelectrics

Ferroelectric/piezoelectric properties

Ferroelectrics dielectric properties

Ferroelectrics piezoelectric properties

Ferroelectrics properties

Piezoelectric properties

© 2024 chempedia.info