Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric properties, ferroelectric

Both antimony tribromide and antimony ttiiodide are prepared by reaction of the elements. Their chemistry is similar to that of SbCl in that they readily hydroly2e, form complex haUde ions, and form a wide variety of adducts with ethers, aldehydes, mercaptans, etc. They are soluble in carbon disulfide, acetone, and chloroform. There has been considerable interest in the compounds antimony bromide sulfide [14794-85-5] antimony iodide sulfide [13868-38-1] ISSb, and antimony iodide selenide [15513-79-8] with respect to their soHd-state properties, ferroelectricity, pyroelectricity, photoconduction, and dielectric polarization. [Pg.204]

Historically, materials based on doped barium titanate were used to achieve dielectric constants as high as 2,000 to 10,000. The high dielectric constants result from ionic polarization and the stress enhancement of k associated with the fine-grain size of the material. The specific dielectric properties are obtained through compositional modifications, ie, the inclusion of various additives at different doping levels. For example, additions of strontium titanate to barium titanate shift the Curie point, the temperature at which the ferroelectric to paraelectric phase transition occurs and the maximum dielectric constant is typically observed, to lower temperature as shown in Figure 1 (2). [Pg.342]

Because of very high dielectric constants k > 20, 000), lead-based relaxor ferroelectrics, Pb(B, B2)02, where B is typically a low valence cation and B2 is a high valence cation, have been iavestigated for multilayer capacitor appHcations. Relaxor ferroelectrics are dielectric materials that display frequency dependent dielectric constant versus temperature behavior near the Curie transition. Dielectric properties result from the compositional disorder ia the B and B2 cation distribution and the associated dipolar and ferroelectric polarization mechanisms. Close control of the processiag conditions is requited for property optimization. Capacitor compositions are often based on lead magnesium niobate (PMN), Pb(Mg2 3Nb2 3)02, and lead ziac niobate (PZN), Pb(Zn 3Nb2 3)03. [Pg.343]

Ferroelectric Thin-Film Devices. Since 1989, the study of ferroelectric thin films has been an area of increasing growth. The compositions studied most extensively are in the PZT/PLZT family, although BaTiO, KNbO, and relaxor ferroelectric materials, such as PMN and PZN, have also been investigated. Solution deposition is the most frequentiy utilized fabrication process, because of the lower initial capital investment cost, ease of film fabrication, and the excellent dielectric and ferroelectric properties that result. [Pg.347]

Crystals with one of the ten polar point-group symmetries (Ci, C2, Cs, C2V, C4, C4V, C3, C3v, C(, Cgv) are called polar crystals. They display spontaneous polarization and form a family of ferroelectric materials. The main properties of ferroelectric materials include relatively high dielectric permittivity, ferroelectric-paraelectric phase transition that occurs at a certain temperature called the Curie temperature, piezoelectric effect, pyroelectric effect, nonlinear optic property - the ability to multiply frequencies, ferroelectric hysteresis loop, and electrostrictive, electro-optic and other properties [16, 388],... [Pg.217]

Haase and co-workers investigated electro-optic and dielectric properties of ferroelectric liquid crystals doped with chiral CNTs [495, 496]. The performance of the doped liquid crystal mixture was greatly affected even by a small concentration of CNTs. The experimental results were explained by two effects (1) the spontaneous polarization of the ferroelectric liquid crystal is screened by the 7t-electron system of the CNT and (2) the CNT 7i-electrons trap ionic impurities, resulting in a significant modification of the internal electric field within liquid crystal test cells. [Pg.370]

In conclusion, we reported the investigation of inner and outer interfaces in pzt in order to quantity both the amount of effective ferroelectric polarization and change in dielectric properties. With pfm and kpfm we find a transition layer occurring at the Pt/PZT interface within... [Pg.248]

The unique dielectric properties and polymorphism of PVDF are the source of its high piezoelectric and pyroelectric activity.75 The relationship between ferroelectric behavior, which includes piezoelectric and pyroelectric phenomena and other electrical properties of the polymorphs of polyvinylidene fluoride, is discussed in Reference 76. [Pg.46]

Recently Frohlich has extended his ideas to give a possible explanation of the extraordinary high sensitivity of certain biological systems to very weak external electric and magnetic signals (2). The model is a combination of both, a nonlinear chemical reaction, which is based on long range interactions, and a ferroelectric term, which represent the specific dielectric properties of membranes. The model equations read ... [Pg.224]

Frey, M.H. et al. (1998) The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics, Ferroelectrics, 206-207, 337-53. [Pg.337]

ELECTRONIC CERAMIC BaTiOj SYNTHESIS, DIELECTRIC AND FERROELECTRIC PROPERTIES... [Pg.85]

In this work, sol-gel method was used to prepare BaTiOj powder, then ceramic electrode was made using this powder after removing binder, sintering and firing silver. Finally, the ceramics are used for the study of ferroelectric and dielectric properties. [Pg.85]

Basantakumar Sharma and Sarma H. N. K., A Mansingh, Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin film. J. Materials Science. 34(1999) pp. 1385-1388. [Pg.90]

Barium titanate (BaTiOj), a perovskite-type electro-ceramic material, has been extensively studied and utilized due to its dielectric and ferroelectric properties. The wide applications of barium titanates include multiplayer capacitors in electronic circuits, nonlinear resistors, thermal switches, passive memory storage devices, and transducers. In addition, barium titanate can be used for chemical sensors due to its surface sensivity to gas adsorption. [Pg.211]

Because of the importance of microstructure on dielectric and ferroelectric properties, the transformation pathway associated with conversion of the amorphous film into the crystalline state has been studied extensively. The basic mechanism involved is one of nucleation and growth, although the formation of intermediate phases that can impact the thermodynamic driving forces associated with the transformation frequently occurs. " Another key aspect of CSD films is that crystallization occurs well below the melting point of the materials. Therefore, compared to standard mixed-oxide processing of bulk materials, the thermodynamic driving forces associated with the transformation are much greater and the kinetics of mass transport are much less. [Pg.545]


See other pages where Dielectric properties, ferroelectric is mentioned: [Pg.9]    [Pg.9]    [Pg.203]    [Pg.482]    [Pg.344]    [Pg.7]    [Pg.265]    [Pg.163]    [Pg.365]    [Pg.391]    [Pg.310]    [Pg.4]    [Pg.1517]    [Pg.339]    [Pg.11]    [Pg.108]    [Pg.121]    [Pg.228]    [Pg.234]    [Pg.241]    [Pg.246]    [Pg.267]    [Pg.358]    [Pg.331]    [Pg.333]    [Pg.253]    [Pg.85]    [Pg.2639]    [Pg.93]    [Pg.187]    [Pg.253]    [Pg.301]    [Pg.340]   


SEARCH



Dielectric propertie

Dielectric properties

Dielectric properties ferroelectric/piezoelectric

Dielectric properties, ferroelectric polymers

Ferroelectric properties

Ferroelectrics dielectric properties

Ferroelectrics dielectric properties

Ferroelectrics properties

© 2024 chempedia.info