Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dicarboxylation catalysts

Asymmetric inverse-electron-demand 1,3-dipolar cycloaddition of C,A-cyclic azomethine imines with c-rich dipolarophiles was accomplished with a high stereo-selectivity by using an axially chiral dicarboxylic catalyst (40)." The metal-free silicon Lewis-acid-catalysed 3-1-2-cycloadditions of A-acylhydrazones with cyclopentadiene provides a mild access to pyrazolidine derivatives in excellent... [Pg.457]

Eberhardt, R. Allmendinger, M. Zintl, M. TroU, C. Luinstra, G.A. Rieger, B. New Zinc Dicarboxylate Catalysts for the CO Propylene Oxide Copolymerization Reaction Activity Enhancement through Zn(II)-Ethylsutfinate Initiating Groups. Macro-mol. Chem. Phys. 2004, 205, 42 7. [Pg.213]

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

Aqueous ring-opening metathesis polymerization (ROMP) was first described in 1989 (90) and it has been appHed to maleic anhydride (91). Furan [110-00-9] reacts in a Diels-Alder reaction with maleic anhydride to give exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3—dicarboxylate anhydride [6118-51 -0] (24). The condensed product is treated with a soluble mthenium(Ill) [7440-18-8] catalyst in water to give upon acidification the polymer (25). Several apphcations for this new copolymer have been suggested (91). [Pg.453]

R SiH and CH2= CHR interact with both PtL and PtL 1. Complexing or chelating ligands such as phosphines and sulfur complexes are exceUent inhibitors, but often form such stable complexes that they act as poisons and prevent cute even at elevated temperatures. Unsaturated organic compounds are preferred, such as acetylenic alcohols, acetylene dicarboxylates, maleates, fumarates, eneynes, and azo compounds (178—189). An alternative concept has been the encapsulation of the platinum catalysts with either cyclodextrin or in thermoplastics or siUcones (190—192). [Pg.48]

Mixed cellulose esters containing the dicarboxylate moiety, eg, cellulose acetate phthalate, have commercially useful properties such as alkaline solubihty and excellent film-forming characteristics. These esters can be prepared by the reaction of hydrolyzed cellulose acetate with a dicarboxyhc anhydride in a pyridine or, preferably, an acetic acid solvent with sodium acetate catalyst. Cellulose acetate phthalate [9004-38-0] for pharmaceutical and photographic uses is produced commercially via the acetic acid—sodium acetate method. [Pg.249]

Mixed esters containing the dicarboxylate moiety, eg, cellulose acetate phthalate, are usually prepared from the partially hydroly2ed lower aUphatic acid ester of cellulose in acetic acid solvent by using the corresponding dicarboxyhc acid anhydride and a basic catalyst such as sodium acetate (41,42). Cellulose acetate succinate and cellulose acetate butyrate succinate are manufactured by similar methods as described in reference 43. [Pg.252]

G-19 Dicarboxylic Acids. The C-19 dicarboxyhc acids are generally mixtures of isomers formed by the reaction of carbon monoxide on oleic acid. Since the reaction produces a mixture of isomers, no single chemical name can be used to describe them. Names that have been used include 2-nonyldecanedioic acid, 2-octylundecanedioic acid, l,8-(9)-heptadecanedicarboxyhc acid, and 9-(10)-carboxystearic acid. The name 9-(10)-carboxystearic acid can be used correctiy if the product is made with no double bond isomerization (rhodium triphenylphosphine catalyst system). [Pg.63]

Practically all pyridazine-carboxylic and -polycarboxylic acids undergo decarboxylation when heated above 200 °C. As the corresponding products are usually isolated in high yields, decarboxylation is frequently used as the best synthetic route for many pyridazine and pyridazinone derivatives. For example, pyridazine-3-carboxylic acid eliminates carbon dioxide when heated at reduced pressure to give pyridazine in almost quantitative yield, but pyridazine is obtained in poor yield from pyridazine-4-carboxylic acid. Decarboxylation is usually carried out in acid solution, or by heating dry silver salts, while organic bases such as aniline, dimethylaniline and quinoline are used as catalysts for monodecarboxylation of pyridazine-4,5-dicarboxylic acids. [Pg.33]

A wide range of polyether-polyamide block copolymers were first offered by Atochem in 1981 under the trade name Pebax. These are made by first producing a low molecular weight polyamide using an excess of dicarboxylic acid at a temperature above 230°C and under a pressure of up to 25 bar. This is then combined with a polyether by reaction at 230-280°C under vacuum (O.l-lOTorr) in the presence of a suitable catalyst such as Ti(OR)4. [Pg.527]

Ruthenium dioxide or ruthenium-on-carbon are effective catalysts for hydrogenation of mono- and dicarboxylic acids to the alcohol or glycol. High pressures (5,000-10,000 psig) and elevated temperatures (130-225 C) have been used in these hydrogenations 8,12,24). Yields of alcohol tend to be less than perfect because of esterification of the alcohol. Near quantitative yields of alcohol can be obtained by mixing ruthenium and copper chromite catalysts so as to reduce the ester as formed. [Pg.78]

Attempts have been made to catalyze the arrangement of 3-oxaquadricyclane to oxepins with transition-metal complexes.1 32 1 35 When dimethyl 2,4-dimethyl-3-oxaquadricyclane-l,5-dicarboxylate is treated with bis(benzonitrile)dichloroplatinum(II) or dicarbonylrhodium chloride dimer, an oxepin with a substitution pattern different from that following thermolysis is obtained as the main product. Instead of dimethyl 2,7-dimethyloxepin-4,5-dicarboxylate, the product of the thermal isomerization, dimethyl 2,5-dimethyloxepin-3,4-dicarboxylate (12), is formed due to the cleavage of a C O bond. This transition metal catalyzed cleavage accounts also for the formation of a 6-hydroxyfulvene [(cyclopentadienylidene)methanol] derivative (10-15%) and a substituted phenol (2-6%) as minor products.135 The proportion of reaction products is dependent on solvent, catalyst, and temperature. [Pg.13]

In a similar reaction, dimethyl 3-oxa-2,4-octanoquadricyclane-l,5-dicarboxylate gives the 6-hydroxyfulvene in 45% yield in addition to oxepin (15%) when bis(benzonitrile)dichloropal-ladium is used as catalyst.132 In the presence of silver(I) perchlorate the yield of 6-hydroxyful-vene reaches 85% whereas the thermal isomerization gives exclusively the oxepin (95% yield). [Pg.13]

Generally, both sodium methoxide and ethoxide are employed as basic catalysts, but sometimes potassium methoxide or sodium hydride67 is used. The alkali salts of the dicarboxylic acids are primarily formed, due to the basic reaction conditions, but after acidic workup the free acids are obtained in 20-60 % yield. Reesterification65 of the acids can be performed (see Section 2.1.4.3.). This method can also be applied to the synthesis of hetarenothiepins such as furanothiepins.67... [Pg.75]

Catalytic hydrogenation of dimethyl 3-methyl-3//-3-benzazepine-2,4-dicarboxylate (10) to the 1,2,4,5-tetrahydro derivative with hydrogen and a palladium-barium sulfate catalyst, followed by treatment of the reaction mixture with iodomethane in refluxing methanol, yields a mixture of the 2,4-dicarboxylic acid 11 and the methiodide salt 12.24... [Pg.284]

From the preceding discussion, it is easily understood that direct polyesterifications between dicarboxylic acids and aliphatic diols (Scheme 2.8, R3 = H) and polymerizations involving aliphatic or aromatic esters, acids, and alcohols (Scheme 2.8, R3 = alkyl group, and Scheme 2.9, R3 = H) are rather slow at room temperature. These reactions must be carried out in the melt at high temperature in the presence of catalysts, usually metal salts, metal oxides, or metal alkoxides. Vacuum is generally applied during the last steps of the reaction in order to eliminate the last traces of reaction by-product (water or low-molar-mass alcohol, diol, or carboxylic acid such as acetic acid) and to shift the reaction toward the... [Pg.61]

Activating agents, such as trifluoroacetic anhydride 1,1 -carbonyldiimidazolc carbodiimides sulfonyl, tosyl, and picryl chlorides and a range of phosphorus derivatives can promote direct solution reactions between dicarboxylic acids and diols or diphenols in mild conditions. The activating agents are consumed during the reaction and, therefore, do not act as catalysts. These so-called direct polycondensation or activation polycondensation reactions proceed via the in situ transformation of one of the reactants, generally the carboxylic acid, into a more... [Pg.77]

The paraffin wax is oxidized by air in a liquid phase process at 110-130°C. Catalysts for this radical reaction are cobalt or manganese salts [54]. The quality of the obtained mixture of homologous carboxylic acids is impaired by numerous byproducts such as aldehydes, ketones, lactones, esters, dicarboxylic acids, and other compounds. These are formed despite a partial conversion of the paraffin and necessitate an expensive workup of the reaction product [50,55]. [Pg.29]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

The dimethylbenzenes (xylenes) are very important industrial chemicals recovered during the refining of petroleum. All three xylenes are used to produce the corresponding aromatic dicarboxylic acids by reaction with oxygen over a catalyst. [Pg.79]

Figure 4.5 A MOF oxidation catalyst based on Cu paddlewheels connected by 1,4-trans-cyclohexane-dicarboxylate ligands (only carboxylate groups are explicitly shown). After oxidation by H2O2, paddlewheels are linked by peroxo bridges (Cu = blue O = red C = gray) [34], (Reproduced by permission of the Royal Society of Chemistry.)... Figure 4.5 A MOF oxidation catalyst based on Cu paddlewheels connected by 1,4-trans-cyclohexane-dicarboxylate ligands (only carboxylate groups are explicitly shown). After oxidation by H2O2, paddlewheels are linked by peroxo bridges (Cu = blue O = red C = gray) [34], (Reproduced by permission of the Royal Society of Chemistry.)...

See other pages where Dicarboxylation catalysts is mentioned: [Pg.121]    [Pg.26]    [Pg.382]    [Pg.34]    [Pg.7189]    [Pg.106]    [Pg.298]    [Pg.163]    [Pg.121]    [Pg.26]    [Pg.382]    [Pg.34]    [Pg.7189]    [Pg.106]    [Pg.298]    [Pg.163]    [Pg.242]    [Pg.36]    [Pg.233]    [Pg.887]    [Pg.696]    [Pg.738]    [Pg.37]    [Pg.272]    [Pg.279]    [Pg.40]    [Pg.43]    [Pg.222]    [Pg.43]    [Pg.71]    [Pg.71]    [Pg.186]    [Pg.48]    [Pg.13]   


SEARCH



© 2024 chempedia.info